Skip to main content

Advertisement

Log in

Ecological response of a shallow boreal lake to biomanipulation and catchment land-use: integrating paleolimnological evidence with information from limnological surveys and maps

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We reconstructed 150 years of ecological change in a shallow boreal lake located on the east shore of the Baltic Sea by integrating different types of environmental evidence: paleolimnological records (XRF-measured elements, fossil pigments and Cladocera assemblages), information from historical limnological surveys and archival maps. We assessed the role of biomanipulation by liming and fish-removal in the disappearance of submerged macrophytes, such as Lobelia dortmanna L., and their replacement by persistent cyanobacterial blooms. The combination of different strands of evidence revealed that the shift from macrophyte to cyanobacterial dominance was part of a long-term ecological response to eutrophication and increased sediment load from catchment disturbances. The findings demonstrate that a gradual loss of wetlands and increase of ditches in a catchment had a more significant effect on the lake ecosystem, compared to the direct, but short-term impact of biomanipulation. The study highlights the importance of catchment land-use and disturbance by ditches in changing the ecology of boreal water bodies. Also, it illustrates that a thorough understanding of the long-term ecosystem dynamics and differentiation among responses to multiple anthropogenic impacts are essential preconditions for addressing the deterioration of habitats and change in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airs RL, Atkinson JE, Keely BJ (2001) Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917:167–177

    Article  Google Scholar 

  • Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 143:21–27

    Article  Google Scholar 

  • Appleby PG, Richardson N, Nolan PJ (1992) Self-absorption corrections for well-type germanium detectors. Nucl Instrum Methods B 71:228–233

    Article  Google Scholar 

  • Arts GH (2002) Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat Bot 73:373–393

    Article  Google Scholar 

  • Bennion H, Davidson TA, Sayer CD, Simpson GL, Rose NL, Sadler JP (2015) Harnessing the potential of the multi-indicator palaeoecological approach: an assessment of the nature and causes of ecological change in a eutrophic shallow lake. Freshw Biol 60:1423–1442

    Article  Google Scholar 

  • Birks HJB (2012) Introduction and overview of part II. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques, vol 5. Springer, Dordrecht, pp 101–121

    Chapter  Google Scholar 

  • Błędzki LA, Szeroczyńska K, Puusepp E (2013) The late holocene appearance of European Bosmina (Eubosmina) thersites (Crustacea, Cladocera) in lakes surrounding the Baltic Sea. Hydrobiologia 715:77–86

    Article  Google Scholar 

  • Boyle JF (2000) Rapid elemental analysis of sediment samples by isotope source XRF. J Paleolimnol 23:213–221

    Article  Google Scholar 

  • Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2., Physical and geochemical methods Developments in paleoenvironmental research, Dordrecht, pp 83–141

    Chapter  Google Scholar 

  • Boyle JF, Sayer CD, Hoare D, Bennion H, Heppel K, Lambert SJ, Appleby PG, Rose NL, Davy AJ (2016) Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England. J Paleolimnol 55:195–208

    Article  Google Scholar 

  • Carpenter SR, Cottingham KL (1997) Resilience and restoration of lakes. Conserv Ecol 1:2–3

    Article  Google Scholar 

  • Condé S, Richard D, Liamine N, Leclère AS, Framstad E, Erikstad KE, Yoccoz N (2002) The boreal biogeographical region. European Environment Agency, Copenhagen, p 37

    Google Scholar 

  • Dole-Olivier M-J, Galassi DMP, Marmonier P, Creuzé des Châtelliers M (2000) The biology and ecology of lotic microcrustaceans. Freshw Biol 44:63–91

    Article  Google Scholar 

  • Donohue I, Garcia Molinos J (2009) Impacts of increased sediment loads on the ecology of lakes. Biol Rev 84:517–531

    Article  Google Scholar 

  • Engstrom DR, Wright HE (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 11–68

    Google Scholar 

  • Faustová M, Sacherová V, Svensson JE, Taylor DJ (2011) Radiation of European Eubosmina (Cladocera) from Bosmina (E.) longispina—concordance of multipopulation molecular data with paleolimnology. Limnol Oceanogr 56:440–450

    Article  Google Scholar 

  • Freiberg R, Nõmm M, Tõnno I, Alliksaar T, Noges T, Kisand A (2011) Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake. Est J Earth Sci 60:91–101

    Article  Google Scholar 

  • Frey DG (1960) The ecological significance of Cladocera remains in lake sediments. Ecology 41:684–699

    Article  Google Scholar 

  • Frey DG (1976) Interpretation of quaternary paleoecology from Cladocera and midges, and prognosis regarding usability of other organisms. Can J Zool 54:2208–2226

    Article  Google Scholar 

  • Futter MN, Keskitalo EC, Ellison D, Pettersson M, Strom A, Andersson E, Nordin J, Löfgren S, Bishop K, Laudon H (2011) Forests, forestry and the water framework directive in Sweden: a trans-disciplinary commentary. Forests 2:261–282

    Article  Google Scholar 

  • Gąsiorowski M, Szeroczyńska K (2004) Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiologia 526:137–144

    Article  Google Scholar 

  • Grudzinska I, Saarse L, Vassiljev J, Heinsalu A, Veski S (2012) A palaeocoastline reconstruction for the Kasmu and Parispea peninsulas (northern Estonia) over the last 4000 years. Est J Earth Sci 61:307–316

    Article  Google Scholar 

  • Hobbs WO, Theissen KM, Hagen SM et al (2014) Persistence of clear-water, shallow-lake ecosystems: the role of protected areas and stable aquatic food webs. J Paleolimnol 51:405–420

    Article  Google Scholar 

  • Hofmann W (1987) Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321

    Article  Google Scholar 

  • Hofmann W (1996) Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318:195–201

    Article  Google Scholar 

  • Jeppesen E, Jensen J, Søndergaard M, Lauridsen T, Pedersen L, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342:151–164

    Article  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198

    Article  Google Scholar 

  • Juggins S (2012) Rioja: analysis of quaternary science data. R package version (0.8–2). http://cran.r-project.org/package=rioja

  • Klaminder J, Appleby P, Crook P, Renberg I (2012) Post-deposition diffusion of 137Cs in lake sediment: implications for radiocaesium dating. Sedimentology 59:2259–2267

    Article  Google Scholar 

  • Lammens E (1999) The central role of fish in lake restoration and management. Hydrobiologia 395:191–198

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, algal and siliceous indicators. Developments in paleoenvironmental research, Dordrecht, pp 295–325

    Chapter  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, p 269

    Google Scholar 

  • Leri AC, Myneni SCB (2012) Natural organobromine in terrestrial ecosystems. Geochim Cosmochim Acta 77:1–10

    Article  Google Scholar 

  • Lõhmus A, Remm L, Rannap R (2015) Just a ditch in forest? Reconsidering draining in the context of sustainable forest management. Bioscience 65(11):1066–1076

    Article  Google Scholar 

  • Mäemets A (1958) Andmeid Eesti vesikirbuliste (Cladocera) faunast. Eesti NSV Tead Akad Toim 5(1):53–65

    Google Scholar 

  • Mäemets A (1968) Eesti järved. (Estonian lakes) Valgus, Tallinn, p 532

  • Mäemets A (1977) Eesti NSV Järved ja Nende Kaitse (Lakes of the Estonian SSR and their protection). Valgus Tallinn, p 263

  • McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecology 86:2200–2211

    Article  Google Scholar 

  • Moorhouse HL, McGowan S, Jones MD, Barker P, Leavitt PR, Brayshaw SA, Haworth EY (2014) Contrasting effects of nutrients and climate on algal communities in two lakes in the Windermere catchment since the late 19th century. Freshw Biol 59:2605–2620

    Article  Google Scholar 

  • Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22

    Article  Google Scholar 

  • Nõges T, Nõges P, Jolma A, Kaitaranta J (2009) Impacts of climate change on physical characteristics of lakes in Europe. JRC Scientific and Technical Reports, EUR 24064 EN. Office for official publications of the European communities, Luxembourg

  • Ott I (2008) Eesti väikejärvede seire (Survey of Estonia’s small lakes). http://seire.keskkonnainfo.ee/index.php?option=com_content&view=article&id=2116&Itemid=429 (visited 2015-06-03). Estonian Environment Information Centre, Estonia

  • Ott I (2012) Lohja järves vohas sinivetikas. (Cyanobacteria in Lake Lohja). http://www.kki.ee/est/index.php?part=news&id=659&group=4 (visited 2014-06-03). Keskkonnainspektsioon, Estonia

  • Raukas A, Punning JM (2009) Environmental problems in the Estonian oil shale industry. Energy Environ Sci 2:723–728

    Article  Google Scholar 

  • Realo E, Jogi J, Koch R, Realo K (1995) Studies on radiocaesium in Estonian soils. J Environ Radioact 29:111–119

    Article  Google Scholar 

  • Reid MA, Sayer CD, Kershaw AP, Heijnis H (2007) Palaeolimnological evidence for submerged plant loss in a floodplain lake associated with accelerated catchment soil erosion (Murray River, Australia). J Paleolimnol 38:191–208

    Article  Google Scholar 

  • Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar Chem 95:283–302

    Article  Google Scholar 

  • Sarmaja-Korjonen K (2002) Multi-proxy data from Kaksoislammi Lake in Finland: dramatic changes in the late holocene cladoceran assemblages. J Paleolimnol 28:287–296

    Article  Google Scholar 

  • Sayer CD, Davidson TA, Jones JI, Langdon PG (2010) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55:487–499

    Article  Google Scholar 

  • Scheffer M (2004) Ecology of shallow lakes. Kluwer Academic Publishers, Dordrecht, p 357

    Book  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Schelske CL, Lowe EF, Battoe LE, Brenner M, Coveney MF, Kenney WF (2005) Abrupt biological response to hydrologic and land-use changes in Lake Apopka, Florida, USA. Ambio 34:192–198

    Article  Google Scholar 

  • Smolders AJP, Lucassen E, Roelofs JGM (2002) The isoetid environment: biogeochemistry and threats. Aquat Bot 73:325–350

    Article  Google Scholar 

  • Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje RO (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–1105

    Article  Google Scholar 

  • Suuroja K, All T, Kõiv M, Mardim T, Morgen E, Ploom K, Vahtra T (2002) Eesti geoloogiline baaskaart (1:50,000)—7322 Loksa. Seletuskiri 85 (Geological basemap of Estonia 1:50,000—Explanatory note 85 for 7322 Loksa)

  • Szeroczyńska K (2002) Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quatern Int 95:165–174

    Article  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie, p 84

    Google Scholar 

  • Szeroczyńska K, Zawisza E (2011) Subfossil faunal and floral remains (Cladocera, Pediastrum) in two northern Lobelia lakes in Finland. Knowl Manag Aquat Ecosyst 402:1–15

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and canodraw for windows. User’s guide. Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Timm T (2005) Kuidas ma loodust ümber kujundasin (How I transformed the landscape). Eesti Loodus 2005/12

  • Vandekerkhove J, Declerck S, Vanhove M, Brendonck L, Jepppesen E, Conde Porcuna JM, De Meester L (2004) Use of ephippial morphology to assess richness of anomopods: potentials and pitfalls. J Limnol 63:75–84

    Article  Google Scholar 

  • Waters MN, Piehler MF, Rodriguez AB et al (2009) Shallow lake trophic status linked to late Holocene climate and human impacts. J Paleolimnol 42:51–64

    Article  Google Scholar 

  • Waters MN, Piehler MF, Smoak JM, Bianchi TS (2012) Algal community responses to shallow lake dystrophication. Can J Fish Aquat Sci 69:1433–1443

    Article  Google Scholar 

  • zur Mühlen M (1898) Die Fischerei—Verhältnisse Estlands (Fisheries—Conditions in Estonia). Sonderabdruck aus der Baltischen Wochenschrift

Download references

Acknowledgments

This study was supported by the Estonian Doctoral School of Earth Sciences and Ecology, the Centre of Excellence “Studies of natural and man-made environments” at Tallinn University and the Estonian Science Foundation under grant 8189. We are very grateful to John F. Boyle, Prof. Krystyna Szeroczyńska, Gennady V. Laptev, Prof. Peter G. Appleby and Prof. Kenneth L. Verosub whose comments greatly improved this manuscript. Also, we would like to thank to Jaanus Terasmaa, Tarmo Kiipli, Toivo Kallaste and René Freiberg for their excellent help with sedimentological analyses. Two anonymous reviewers helped to improve the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agáta Marzecová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzecová, A., Avi, E., Mikomägi, A. et al. Ecological response of a shallow boreal lake to biomanipulation and catchment land-use: integrating paleolimnological evidence with information from limnological surveys and maps. J Paleolimnol 57, 1–18 (2017). https://doi.org/10.1007/s10933-016-9906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9906-2

Keywords

Navigation