Skip to main content
Log in

Studying the Role of a Single Mutation of a Family 11 Glycoside Hydrolase Using High-Resolution X-ray Crystallography

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

XynII is a family 11 glycoside hydrolase that uses the retaining mechanism for catalysis. In the active site, E177 works as the acid/base and E86 works as the nucleophile. Mutating an uncharged residue (N44) to an acidic residue (D) near E177 decreases the enzyme’s optimal pH by ~ 1.0 unit. D44 was previously suggested to be a second proton carrier for catalysis. To test this hypothesis, we abolished the activity of E177 by mutating it to be Q, and mutated N44 to be D or E. These double mutants have dramatically decreased activities. Our high-resolution crystallographic structures and the microscopic pKa calculations show that D44 has similar position and pKa value during catalysis, indicating that D44 changes electrostatics around E177, which makes it prone to rotate as the acid/base in acidic conditions, thus decreases the pH optimum. Our results could be helpful to design enzymes with different pH optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal Cellulases. Chem Rev 115:1308–1448

    Article  CAS  Google Scholar 

  2. Speciale G, Thompson AJ, Davies GJ, Williams SJ (2014) Dissecting conformational contributions to glycosidase catalysis and inhibition. Curr Opin Struc Biol 28:1–13

    Article  CAS  Google Scholar 

  3. Langan P, Gnanakaran S, Rector KD, Pawley N, Fox DT, Cho DW, Hammel KE (2011) Exploring new strategies for cellulosic biofuels production. Energ Environ Sci 4:3820–3833

    Article  CAS  Google Scholar 

  4. Torronen A, Harkki A, Rouvinen J (1994) Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13:2493–2501

    Article  CAS  Google Scholar 

  5. Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, Kovalevsky A (2014) X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallogr SectD Biol Crystallogr. 70:11–23

    Article  CAS  Google Scholar 

  6. Wan Q, Parks JM, Hanson BL, Fisher SZ, Ostermann A, Schrader TE, Graham DE, Coates L, Langan P, Kovalevsky A (2015) Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography. Proc Natl Acad Sci USA 112:12384–12389

    Article  CAS  Google Scholar 

  7. Vasella A, Davies GJ, Bohm M (2002) Glycosidase mechanisms. Curr. Opin. Chem Biol 6:619–629

    CAS  Google Scholar 

  8. Zechel DL, Withers SG (2000) Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    Article  CAS  Google Scholar 

  9. Bai WQ, Cao YF, Liu J, Wang QH, Jia ZH (2016) Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 16:77–86

    Article  Google Scholar 

  10. Amel BD, Nawel B, Khelifa B, Mohammed G, Manon J, Salima KG, Farida N, Hocine H, Bernard O, Jean-Luc C, Marie-Laure F (2016) Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp nov strain TH7C1(T). Carbohydr Res 419:60–68

    Article  CAS  Google Scholar 

  11. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  12. Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng 11:1121–1128

    Article  CAS  Google Scholar 

  13. Joshi MD, Sidhu G, Pot I, Brayer GD, Withers SG, McIntosh LP (2000) Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol 299:255–279

    Article  CAS  Google Scholar 

  14. Li ZH, Zhang XS, Wang QQ, Li CR, Zhang NY, Zhang XK, Xu BR, Ma BL, Schrader TE, Coates L, Kovalevsky A, Huang YD, Wan Q (2018) Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography. ACS Catal 8:8058–8069

    Article  CAS  Google Scholar 

  15. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Method Enzymol 326:245–254

    Article  CAS  Google Scholar 

  16. Bailey MJ, B. P., Poutanen K., (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  17. Wang QS, Zhang KH, Cui Y, Wang ZJ, Pan QY, Liu K, Sun B, Zhou H, Li MJ, Xu Q, Xu CY, Yu F, He JH (2018) Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl Sci Tech 29:68

    Article  Google Scholar 

  18. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr Sect D: Biol Crystallogr 62:859–866

    Article  Google Scholar 

  19. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D: Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  20. Watanabe N, Akiba T, Kanai R, Harata K (2006) Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. Acta Crystallogr Sect D: Biol Crystallogr 62:784–792

    Article  Google Scholar 

  21. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr Sect D Biol Crystallogr 68:352–367

    Article  CAS  Google Scholar 

  22. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D: Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  23. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D: Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  24. Jeffrey GA, Yates JH (1979) Stereographic Representation of the Cremer-Pople Ring-Puckering Parameters for Pyranoid Rings. Carbohydr Res 74:319–322

    Article  CAS  Google Scholar 

  25. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0 automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:537–541

    Article  Google Scholar 

  26. Zhou HX, Pang XD (2018) Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 118:1691–1741

    Article  CAS  Google Scholar 

  27. Sun ZX, Wang XH, Song JN (2017) Extensive Assessment of Various Computational Methods for Aspartate’s pK(a) Shift. J Chem Inf Model 57:1621–1639

    Article  CAS  Google Scholar 

  28. Cheng YS, Chen CC, Huang CH, Ko TP, Luo W, Huang JW, Liu JR, Guo RT (2014) Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme. J Biol Chem 289:11020–11028

    Article  CAS  Google Scholar 

  29. Iglesias-Fernandez J, Raich L, Ardevol A, Rovira C (2015) The complete conformational free energy landscape of beta-xylose reveals a two-fold catalytic itinerary for beta-xylanases. Chem Sci 6:1167–1177

    Article  CAS  Google Scholar 

  30. Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  CAS  Google Scholar 

  31. Ludwiczek ML, D’Angelo I, Yalloway GN, Brockerman JA, Okon M, Nielsen JE, Strynadka NCJ, Withers SG, McIntosh LP (2013) Strategies for Modulating the pH-Dependent Activity of a Family 11 Glycoside Hydrolase. Biochemistry 52:3138–3156

    Article  CAS  Google Scholar 

  32. Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40:10115–10139

    Article  CAS  Google Scholar 

  33. Ardevol A, Rovira C (2015) Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 137:7528–7547

    Article  CAS  Google Scholar 

  34. Kwon H, Langan PS, Coates L, Raven EL, Moody PCE (2018) The rise of neutron cryo-crystallography. Acta Crystallogr Sect D: Struct Biol 74:792–799

    Article  CAS  Google Scholar 

  35. Chen JCH, Unkefer CJ (2017) Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography. IUCrJ 4:72–86

    Article  CAS  Google Scholar 

  36. O’Dell WB, Bodenheimer AM, Meilleur F (2016) Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 602:48–60

    Article  CAS  Google Scholar 

  37. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  CAS  Google Scholar 

  38. Li JH, Wang LS (2011) Why substituting the asparagine at position 35 in Bacillus circulans xylanase with an aspartic acid remarkably improves the enzymatic catalytic activity? A quantum chemistry-based calculation study. Polym Degrad Stab 96:1009–1014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.W. was supported by the National Natural Science Foundation of China (No. 31670790), the Fundamental Research Funds for the Central Universities (No. KYXK202009), a Chinese Spallation Neutron Source User Special Grant, the Qing Lan Project of Jiangsu Province, and the Six Talent Peaks Project of Jiangsu Province. We thank the staff of the BL17U, BL18U1 and BL19U1 beamlines at Shanghai Synchrotron Radiation Facility, Shanghai, P.R. China, for assistance during X-ray data collection. Research at ORNL’s HFIR and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 3683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, X., Li, C. et al. Studying the Role of a Single Mutation of a Family 11 Glycoside Hydrolase Using High-Resolution X-ray Crystallography. Protein J 39, 671–680 (2020). https://doi.org/10.1007/s10930-020-09938-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09938-5

Keywords

Navigation