Skip to main content
Log in

Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycosidases are used in the food, chemical, and energy industries. These proteins are some of the most frequently used such enzymes, and their thermostability is essential for long-term and/or repeated use. In addition to thermostability, modification of the substrate selectivity and improvement of the glycosidase activities are also important. Thermostabilization of enzymes can be performed by directed evolution via random mutagenesis or by rational design via site-directed mutagenesis; each approach has advantages and disadvantages. In this paper, we introduce thermostabilization of glycoside hydrolases by rational protein design using site-directed mutagenesis along with X-ray crystallography and simulation modeling. We focus on the methods of thermostabilization of glycoside hydrolases by linking the N- and C-terminal ends, introducing disulfide bridges, and optimizing β-turn structures to promote hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:252–258

    Article  Google Scholar 

  • Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J 89:4159–4170

    Article  CAS  Google Scholar 

  • Cao LC, Wang ZJ, Ren GH, Kong W, Li L, Xie W, Liu YH (2015) Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol Biofuels 8:202

    Article  Google Scholar 

  • Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci U S A 90:5618–5622

    Article  CAS  Google Scholar 

  • Chen Z, Zhang H, Wang J, Tang C, Wu J, Wu M (2013) Engineering the thermostability of a xylanase from Aspergillus oryzae by an enhancement of the interactions between the N-terminus extension and the ß-sheet A2 of the enzyme. Biotechnol Lett 35:2073–2079

    Article  CAS  Google Scholar 

  • Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222

    Article  CAS  Google Scholar 

  • Dalby PA (2011) Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol 21:473–480

    Article  CAS  Google Scholar 

  • Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613

    Article  Google Scholar 

  • Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a β-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj J 16:27–37

    Article  CAS  Google Scholar 

  • Doncheva NT, Klein K, Domingues FS, Albrecht M (2011) Analyzing and visualizing residue networks of protein structures. Trends Biochem Sci 36:179–182

    Article  CAS  Google Scholar 

  • Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ, Lakey JH, Morland C, Luginbühl P, Healey S, Todaro T, DeSantis G, Sun M, Parra-Gessert L, Tan X, Weiner DP, Gilbert HJ (2008) Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem 283:22557–22564

    Article  CAS  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  Google Scholar 

  • Ishikawa K, Kataoka M, Yanamoto T, Nakabayashi M, Watanabe M, Ishihara S, Yamaguchi S (2015) Crystal structure of β-galactosidase from Bacillus circulans ATCC 31382 (BgaD) and the construction of the thermophilic mutants. FEBS J 282:2540–2552

    Article  CAS  Google Scholar 

  • Joo JC, Pack SP, Kim YH, Yoo YJ (2011) Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151:56–65

    Article  CAS  Google Scholar 

  • Kataoka M, Akita F, Maeno Y, Inoue B, Inoue H, Ishikawa K (2014) Crystal structure of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) GH family 11 xylanase. Appl Biochem Biotechnol 174:1599–1612

    Article  CAS  Google Scholar 

  • Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12:371–375

    Article  CAS  Google Scholar 

  • Liebl W, Gabelsberger J, Schleifer KH (1994) Comparative amino acid sequence analysis of Thermotoga maritima β-glucosidase (BglA) deduced from the nucleotide sequence of the gene indicates distant relationship between β-glucosidase of the BGA family and other families of β-1,4-glycosyl hydrolases. Mol Gen Genet 242:111–115

    CAS  PubMed  Google Scholar 

  • Linares-Pastén JA, Andersson M, Nordberg Karlsson E (2014) Thermostable glycoside hydrolases in biorefinery technologies. Curr Biotechnol 3:26–44

    Article  Google Scholar 

  • Lo MC, Aulabaugh A, Jin GX, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  Google Scholar 

  • Lutz S (2010) Beyond directed evolution--semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743

    Article  CAS  Google Scholar 

  • Mahanta P, Bhardwaj A, Kumar K, Reddy VS, Ramakumar S (2015) Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme. FEBS J 282:3543–3555

    Article  CAS  Google Scholar 

  • Marshall SA, Lazar GA, Chirino AJ, Desjarlais JR (2003) Rational design and engineering of therapeutic proteins. Drug Discov Today 8:212–221

    Article  CAS  Google Scholar 

  • Matsuura Y, Takehira M, Joti Y, Ogasahara K, Tanaka T, Ono N, Kunishima N, Yutani K (2015) Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci Rep 5:15545

    Article  CAS  Google Scholar 

  • Matsuzawa T, Yaoi K (2017) Screening, identification, and characterization of a novel saccharide-stimulated β-glucosidase from a soil metagenomic library. Appl Microbiol Biotechnol 101:633–646

    Article  CAS  Google Scholar 

  • Matsuzawa T, Kaneko S, Yaoi K (2016) Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 100:8043–8051

    Article  CAS  Google Scholar 

  • Matsuzawa T, Watanabe M, Yaoi K (2017) Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Appl Microbiol Biotechnol 101:8353–8363

    Article  CAS  Google Scholar 

  • Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A 84:6663–6667

    Article  CAS  Google Scholar 

  • Miyazaki K, Arnold FH (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49:716–720

    Article  CAS  Google Scholar 

  • Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P (2013) Product inhibition of five Hypocrea jecorina cellulases. Enzym Microb Technol 52:163–169

    Article  CAS  Google Scholar 

  • Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  Google Scholar 

  • Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A (2004) The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. J Biol Chem 279:36029–36037

    Article  CAS  Google Scholar 

  • Schellman JA (1975) Macromolecular binding. Biopolymers 14:999–1018

    Article  CAS  Google Scholar 

  • Teugjas H, Väljamäe P (2013) Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels 6:105

    Article  CAS  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2007) PIC: Protein Interactions Calculator. Nucleic Acids Res 35:473–476

    Article  Google Scholar 

  • Törrönen A, Rouvinen J (1995) Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34:847–856

    Article  Google Scholar 

  • Travaglini-Allocatelli C, Ivarsson Y, Jemth P, Gianni S (2009) Folding and stability of globular proteins and implications for function. Curr Opin Struct Biol 19:3–7

    Article  CAS  Google Scholar 

  • Trevino SR, Schaefer S, Scholtz JM, Pace CN (2007) Increasing protein conformational stability by optimizing β-turn sequence. J Mol Biol 373:211–218

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Watanabe M, Fukada H, Ishikawa K (2016) Construction of thermophilic xylanase and its structural analysis. Biochemistry 55:4399–4409

    Article  CAS  Google Scholar 

  • Word JM, Lovell SC, Labean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC (1999a) Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 285:1711–1733

    Article  CAS  Google Scholar 

  • Word JM, Lovell SC, Richardson JS, Richardson DC (1999b) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  Google Scholar 

  • Yernool DA, McCarthy JK, Eveleigh DE, Bok JD (2000) Cloning and characterization of the glucooligosaccharide catabolic pathway β-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol 182:5172–5179

    Article  CAS  Google Scholar 

  • Zavodszky M, Chen CW, Huang JK, Zolkiewski M, Wen L, Krishnamoorthi R (2001) Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V. Protein Sci 10:149–160

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI (Grant-in-Aid for Young Scientists B, Grant No. 26850067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuro Yaoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Matsuzawa, T. & Yaoi, K. Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis. Appl Microbiol Biotechnol 102, 8677–8684 (2018). https://doi.org/10.1007/s00253-018-9288-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9288-7

Keywords

Navigation