Skip to main content
Log in

Why Proteins are Big: Length Scale Effects on Equilibria and Kinetics

  • Perspective
  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Proteins are polymers, and yet the language used in describing their thermodynamics and kinetics is most often that of small molecules. Using the terminology and mathematical descriptions of small molecules impedes understanding why proteins have evolved to be big in comparison. Many properties of the proteins should be interpreted as polymer behavior, and these arise because of the longer length scale of polymer dimensions. For example, entropic rubber elasticity arises only because of polymer properties, and understanding the separation of entropic and enthalpic contributions shows that the entropic contributions mostly reside within the polymer and enthalpy originates mostly at the site of small-molecule binding. Recognizing the physical chemistry of polymers in descriptions of proteins’ structure and function can add clarity to what might otherwise appear to be confusing or even paradoxical behavior. Two of these paradoxes include, first, highly selective binding that is, nevertheless, weak, and, second, small perturbations of an enzyme that cause large changes in reaction rates. Further, for larger structures such as proteins every thermodynamic measurement depends on the length scale of the structure. One reason is that the larger molecule can control up to thousands of waters resulting in collective movements with kcal sums of single-calorie-per-molecule solvent energy changes. In addition, the nature of covalent polypeptides commonly leads to multiple binding—i.e., multivalency—and the benefits of multivalent binding can be assessed semiquantitatively drawing from understanding the chelate effect in coordination chemistry. Such approaches clarify the origins, inter alia, of many low energies of protein denaturation, which lie in the range of only a few kcal mol−1, and the difficulties in finding the structures of proteins in the multiple substates postulated within complex kinetic schemes. These models involving longer length scales can be used to elucidate why such observed behavior occurs, and can provide insight and clarity where the phenomena modeled employing experimentally inseparable translational, vibrational, and rotational entropy along with charge, dipole moment, hydration, hydrogen bonding, and van der Waals energies together obscure such origins. The short-distance, long distance separation does not include explaining any enzymatic lowering of activation energies due to stabilization of the intermediate(s) along the reaction path. However, well known small-molecule methods that treat electrostatics and bonding can be used to explain the local chemistry that contributes most of the changes in enthalpy and activation enthalpy for the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    Article  CAS  PubMed  Google Scholar 

  2. Koshland JDE, Neet KE (1968) The catalytic and regulatory properties of enzymes. Ann Rev Biochem 37:359–411

    Article  CAS  PubMed  Google Scholar 

  3. Careri G, Fasella P, Gratton E (1979) Enzyme dynamics: the statistical physics approach. Ann Rev Biophys Bioeng 8:69–97

    Article  CAS  Google Scholar 

  4. Britt BM (1997) For enzymes, bigger is better. Biophys Chem 69:63–70

    Article  CAS  PubMed  Google Scholar 

  5. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438(3 November):117–121

    Article  CAS  PubMed  Google Scholar 

  6. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Dorothee Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(6 December):913–918

    Article  CAS  PubMed  Google Scholar 

  7. Kokkinidis M, Glykos NM, Fadouloglou VE (2012) Protein flexibility and enzymatic catalysis. Adv Prot Chem Struct Biol 87:181–218

    Article  CAS  Google Scholar 

  8. Hong L, Glass DC, Nickels JD, Perticaroli S, Yi Z, Madhusudan T, O’Neill H, Zhang Q, Sokolov AP, Smith JC (2013) Elastic and conformational softness of a globular protein. Phys Rev Lett 110:028104

    Article  CAS  PubMed  Google Scholar 

  9. Warshel A, Bora RP (2016) Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 144:180901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bar-Even A, Milo R, Noor E, Tawfik DS (2015) The moderately efficient enzyme: futile encounters and enzyme floppiness. Biochemistry 54:4969–4977

    Article  CAS  PubMed  Google Scholar 

  11. Glantz-Gashai Y, Meirson T, Samson AO (2016) Normal modes expose active sites in enzymes. PLoS Comput Biol 12:e1005293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cram DJ, Lein GM, Kaneda T, Helgeson RC, Knobler CB, Maverick E, Trueblood KN (1981) Augmented and diminished spherands and scales of binding. J Am Chem Soc 103(20):6228–6232

    Article  CAS  Google Scholar 

  13. Krishtalik LI, Topolev VV (1983) The intraglobular electrostatic field of an enzyme. 1. The primary field created by the polypeptide core, functional groups and ions of the alpha-chymotrypsin molecule. Molekuliarnaia Biologiia 17(5):1034–1041

    CAS  PubMed  Google Scholar 

  14. Reinhoudt DN, Dijkstra PJ (1988) Role of preorganization in host-guest-chemistry. Pure Appl Chem 60(4):477–482

    Article  CAS  Google Scholar 

  15. Bruice TC, Benkovic SJ (2000) Chemical basis for enzyme catalysis. Biochemistry 39(21):6267–6274

    Article  CAS  PubMed  Google Scholar 

  16. Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci USA 101(31):11287–11292

    Article  CAS  PubMed  Google Scholar 

  17. Nienhaus GU (2006) Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis. Macromol Biosci 6:907–922

    Article  CAS  PubMed  Google Scholar 

  18. Wittenberg JB, Isaacs L (2012) Complementarity and preorganization. In: Steed JW, Gale PA (eds) Supramolecular chemistry: from molecules to nanomaterials. https://doi.org/10.1002/9780470661345.smc004/full

  19. Kitov PI, Bundle DR (2003) On the nature of the multivalency effect: a thermodynamic model. J Am Chem Soc 125:16271–16284

    Article  CAS  PubMed  Google Scholar 

  20. Badjić JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 38:723–732

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Hunter CA, Navarro C, Turega S (2013) Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds. J Am Chem Soc 135:13129–13141

    Article  CAS  PubMed  Google Scholar 

  22. Rand RP (1981) Interacting phospholipid bilayers: measured forces and induced structural changes. Ann Rev Biophys Bioeng 10:277–314

    Article  CAS  Google Scholar 

  23. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys Rev E 62(3):4000–4009

    Article  CAS  Google Scholar 

  24. Filfil R, Chalikian TV (2003) The thermodynamics of protein–protein recognition as characterized by a combination of volumetric and calorimetric techniques: the binding of turkey ovomucoid third domain to α-chymotrypsin-chymotrypsin. J Mol Biol 326:1271–12288

    Article  CAS  PubMed  Google Scholar 

  25. Fisette O, Päslack C, Barnes R, Isas JM, Langen R, Heyden M, Han S, Schäfer LV (2016) Hydration dynamics of a peripheral membrane protein. J Am Chem Soc 138:11526–11535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rubinson KA, Meuse CW (2013) Deep hydration: poly(ethylene glycol) Mw 2000-8000 Da probed by vibrational spectrometry and small-angle neutron scattering and assignment of ΔG° to individual water layers. Polymer 54:709–723

    Article  CAS  Google Scholar 

  27. Cheng C-Y, Varkey J, Ambroso MR, Langen R, Han S (2013) Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proc Natl Acad Sci USA 110:16838–16843

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Havenith M (2015) Perspective: watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy. J Chem Phys 143:170901

    Article  CAS  PubMed  Google Scholar 

  29. Munro D (1977) Misunderstandings over the chelate effect. Chem Britain 13(3):100–105

    CAS  Google Scholar 

  30. Cotton FA, Harris FE (1956) The thermodynamics of chelate formation. II. A Monte Carlo study of the distributions of configurations in short chains. J Phys Chem 60(10):1451–1454

    Article  CAS  Google Scholar 

  31. Carter MJ, Beattie JK (1970) The kinetic chelate effect. Chelation of ethylenediamine on platinum(II). Inorg Chem 9(5):1233–1238

    Article  CAS  Google Scholar 

  32. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34(12):938–945

    Article  CAS  PubMed  Google Scholar 

  33. Naganathan AN (2019) Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 54:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Vogt AD, Di Cera E (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51:5894–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogt AD, Di Cera E (2013) Conformational selection is a dominant mechanism of ligand binding. Biochemistry 52:5723–5729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gianni S, Dogan J, Jemth P (2014) Distinguishing induced fit from conformational selection. Biophys Chem 189:33–39

    Article  CAS  PubMed  Google Scholar 

  37. Cabbiness DK, Margerum DW (1970) Effect of macrocyclic structures on the rate of formation and dissociation of copper(II) complexes. J Am Chem Soc 92(7):2131–2133

    Article  Google Scholar 

  38. Lightstone FC, Bruice TC (1996) Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-D4-tetrahydrophthalate monophenyl esters. J Am Chem Soc 118:2595–2605

    Article  CAS  Google Scholar 

  39. Rosker MJ, Dantus M, Zewail AH (1988) Femtosecond clocking of the chemical bond. Science 241:1200–1202

    Article  CAS  PubMed  Google Scholar 

  40. Jönsson P-G (1971) Hydrogen bond studies. XLIV. neutron diffraetion study of acetie acid. Acta Cryst B27:893–898

    Article  Google Scholar 

  41. Robl C, Hentschel S, McIntyer GJ (1992) Hydrogen bonding in Be[C2(COO)2]·4H2O–a neutron diffraction study at 15 K. J Solid State Chem 96:318–323

    Article  CAS  Google Scholar 

  42. Elles CG, Crim FF (2006) Connecting chemical dynamics in gases and liquids. Annu Rev Phys Chem 57:273–302

    Article  CAS  PubMed  Google Scholar 

  43. Goryainov SV (2012) A model of phase transitions in double-well Morse potential: application to hydrogen bond. Phys B 407:4233–4237

    Article  CAS  Google Scholar 

  44. Ishikita H, Saito K (2016) Proton transfer reactions and hydrogen-bond networks in protein environments. J R Soc Interface 11:20130518

    Article  CAS  Google Scholar 

  45. Blinc R, Hadži D, Novak A (1960) The relation between the bridge length of short hydrogen bonds, the potential curve, and the hydroxyl stretching frequency. Beri Bunsenge Phys Chem 64(5):567–571

    CAS  Google Scholar 

  46. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 1:91–124

    Article  Google Scholar 

  47. Batsanov SS (2001) Van der Waals Radii of Elements. Inorg Mater 37(9):871–885

    Article  CAS  Google Scholar 

  48. Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG (2009) Consistent van der Waals Radii for the Whole Main Group. J Phys Chem A 113:5806–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Menger FM (1983) Directionality of organic reactions in solution. Tetrahedron 39(7):1013–1040

    Article  CAS  Google Scholar 

  50. Menger FM (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Resh 18:128–132

    Article  CAS  Google Scholar 

  51. Karaman R (2010) A general equation correlating intramolecular rates with ‘attack’ parameters: distance and angle. Tetrahedron Lett 51:5185–5190

    Article  CAS  Google Scholar 

  52. Rini M, Kummrow A, Dreyer J, Nibbering ETJ, Elsaesser T (2002) Femtosecond mid-infrared spectroscopy of condensed phase hydrogen-bonded systems as a probe of structural dynamics. Faraday Discuss 122:27–40

    Article  CAS  Google Scholar 

  53. Menger FM, Chow JF, Kaiserman H, Vasquez PC (1983) Directionality of proton transfer in solution. three systems of known angularity. J Am Chem Soc 105:4996–5002

    Article  CAS  Google Scholar 

  54. Robinson RA, Stokes RH (1959) Electrolyte solutions, 2nd edn. Butterworths, Appendices 11.1 & 11.2, London

  55. Rubinson KA (1984) Regularity in protonation and rate constants and the structures in solution of reactants containing a benzene ring. J Phys Chem 88:148–156

    Article  CAS  Google Scholar 

  56. Rühmann EH, Rupp M, Betz M, Heine A, Klebe G (2016) Boosting affinity by correct ligand preorganization for the S2 pocket of thrombin: a study by isothermal titration calorimetry, molecular dynamics, and high-resolution crystal structures. ChemMedChem 11:309–319

    Article  CAS  PubMed  Google Scholar 

  57. Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, Xu J, Parker T (2002) Elastin: a representative ideal protein elastomer. Philo Trans R Soc Lond B 357:169–184

    Article  CAS  Google Scholar 

  58. Bryan PN, Orban J (2010) Proteins that swich folds. Curr Opin Struct Biol 20:482–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Proter LL, He Y, Chen Y, Orban J, Bryan PN (2015) Subdomain interactions foster the design of two protein pairs with ~ 80% sequence identity but different folds. Biophys J 108:154–162

    Article  CAS  Google Scholar 

  60. Wong K-B, Yu H-A, Chan C-H (2012) Energetics of protein folding. In: Egelman EH (ed) Comprehensive biophysics, vol 3. Academic Press, New York, pp 19–33

    Chapter  Google Scholar 

  61. Dobry A, Fruton JS, Sturtevant JM (1952) Thermodynamics of hydrolysis of peptide bonds. J Biol Chem 195:149–154

    CAS  PubMed  Google Scholar 

  62. Borsook H (1953) Peptide bond formation. Adv Prot Chem 8:127–174

    CAS  Google Scholar 

  63. Martin RB (1998) Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers 45:351–353

    Article  CAS  Google Scholar 

  64. Xiong K, Asciutto EK, Madura JD, Asher SA (2009) Salt dependence of an α-helical peptide folding energy landscapes. Biochem 48:10818–10826

    Article  CAS  Google Scholar 

  65. Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HX, O’Neil KT, DeGrado WF (1995) Protein design: a hierarchic approach. Science 270:935–941

    Article  CAS  PubMed  Google Scholar 

  66. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scholtz JM, Qian H, Robbins VH, Baldwin RL (1993) The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry 32:9668–9676

    Article  CAS  PubMed  Google Scholar 

  68. Muñoz V, Serrano L (1995) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol 245:275–296

    Article  PubMed  Google Scholar 

  69. Yang J, Spek EJ, Gong Y, Zhou H, Kallenbach NR (1997) The role of context on α-helix stabilization: host-guest analysis in a mixed background peptide model. Prot Sci 6:1264–1272

    Article  CAS  Google Scholar 

  70. Kim C, Berg JM (1993) Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362:267–270

    Article  CAS  PubMed  Google Scholar 

  71. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235

    Article  CAS  PubMed  Google Scholar 

  72. Kamerlin SCL, Warshel A (2009) At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78:1339–1375

    Google Scholar 

  73. Flory PJ (1953, Chap. XI) Principles of polymer chemistry. Cornell University Press, Ithaca

  74. Rubinson KA (1986) Closed channel-open channel equilibrium of the sodium channel of nerve: simple models of macromolecular equilibria. Biophys Chem 25:57–72

    Article  CAS  PubMed  Google Scholar 

  75. Flory PJ (1988, Chap. VIII) Statistical mechanics of chain molecules. Hanser, Munich

  76. Rajasekaran N, Sekhar A, Naganathan AN (2017) A Universal pattern in the percolation and dissipation of protein structural perturbations. J Phys Chem Lett 8:4779–4784

    Article  CAS  PubMed  Google Scholar 

  77. Fischer S, Smith JC, Verma CS (2001) Dissecting the vibrational entropy change on protein/ligand binding: burial of a water molecule in bovine pancreatic trypsin inhibitor. J Phys Chem B 105:8050–8055

    Article  CAS  Google Scholar 

  78. Nicolaï A, Delarue P, Senet P (2015) Intrinsic localized modes in proteins. Sci Rep 5:18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kalescky R, Zhou H, Liu J, Tao P (2016) Rigid residue scan simulations systematically reveal residue entropic roles in protein allostery. PLoS Comput Biol 12(4):e1004893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith JC (1991) Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q Rev Biophys 24(3):227–291

    Article  CAS  PubMed  Google Scholar 

  81. Houk KN, Leach AG, Kim SP, Zhang X (2003) Binding affinities of host–guest, protein–ligand, and protein–transition-state complexes. Angew Chem Int Ed Engl 42:4872–4897

    Article  CAS  PubMed  Google Scholar 

  82. Fitter J (2003) A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy. Biophys J 84:3924–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubinson KA (1998) The polymer basis of kinetics and equilibria of enzymes: the accessible-volume origin of entropy changes in a class Aβ-lactamase. J Protein Chem 17(8):771–787

    Article  CAS  PubMed  Google Scholar 

  84. Christensen BE, Smidsrød O, Stokke BT (1996) Metastable, partially depolymerized xanthans and rearrangements toward perfectly matched duplex structures. Macromolecules 29:2939–2944

    Article  CAS  Google Scholar 

  85. Levitt M (2014) Birth and future of multiscale modeling for macromolecular systems. Angew Chem Int Ed Engl 53:10006–10018

    Article  CAS  PubMed  Google Scholar 

  86. Bailey RT, North AM, Pethrick RA (1981, Ch. 13) Molecular motion in high polymers. Clarendon Press, Oxford

  87. Richards EG (1980) An introduction to physical properties of large molecules in solution. Cambridge University Press, Cambridge

    Google Scholar 

  88. Frey E, Kroy K (2005) Brownian motion: a paradigm of soft matter and biological physics. Ann Phys (Leipzig) 14:20–50

    Article  CAS  Google Scholar 

  89. Schulz GE (1992) Induced-fit movements in adenylate kinases. Farad Disc 93:85–93

    Article  CAS  Google Scholar 

  90. Berry MB, Meador B, Bilderback T, Liang P, Glaser M, Phillips GN Jr (1994) The closed conformation of a highly fexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins Struct Funct Genet 19:183–198

    Article  CAS  PubMed  Google Scholar 

  91. Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG (2017) An allosteric site in the T-cell receptor Cb domain plays a critical signalling role. Nat Commun 8:15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacobson H, Stockmayer WH (1950) Intramolecular reaction in polycondensations. I. The theory of linear systems. J Chem Phys 18:1600–1606

    Article  CAS  Google Scholar 

  93. Shoemaker BA, Wang J, Wolynes PG (1997) Structural correlations in protein folding funnels. Proc Natl Acad Sci USA 94:777–782

    Article  CAS  PubMed  Google Scholar 

  94. Rupley JA, Gratton E, Careri G (1983) Water and globular proteins. TIBS 8(1):18–22

    CAS  Google Scholar 

  95. Thanki N, Thornton JM, Goodfellow JM (1988) Distributions of water around amino acid residues in proteins. J Mol Biol 202:637–657

    Article  CAS  PubMed  Google Scholar 

  96. Menger FM (1993) Enzyme reactivity from and organic perspective. Acc Chem Res 26:206–212

    Article  CAS  Google Scholar 

  97. Krokoszyńska I, Otlewski J (1996) Thermodynamic stability effects of single peptide bond hydrolysis in protein inhibitors of serine proteinases. J Mol Biol 256:793–802

    Article  PubMed  Google Scholar 

  98. Siebert X, Amzel LM (2004) Loss of translational entropy in molecular associations. Proteins 54(1):104–115

    Article  CAS  PubMed  Google Scholar 

  99. Fenimore PW, Frauenfelder H, McMahon BH, Yound RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101(40):14408–14413

    Article  CAS  PubMed  Google Scholar 

  100. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 180:74–108

    Article  CAS  Google Scholar 

  101. Paciaroni A, Cornicchi E, Marconi M, Orecchini A, Petrillo C, Haertlein M, Moulin M, Sacchetti F (2009) Coupled relaxations at the protein–water interface in the picosecond time scale. J R Soc Interface 6:S635–S640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Biela A, Betz M, Heine A, Klebe G (2012) Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein–ligand binding. ChemMedChem 7:1423–1434

    Article  CAS  PubMed  Google Scholar 

  103. Le Caër S, Klein G, Ortiz D, Lima M, Devineau S, Pin S, Brubach J-B, Roy P, Pommeret S, Leibl W, Righini R, Renault JP (2014) The effect of myoglobin crowding on the dynamics of water: an infrared study. Phys Chem Chem Phys 16:22841–22852

    Article  CAS  PubMed  Google Scholar 

  104. Nibali VC, Havenith M (2014) New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J Am Chem Soc 136:12800–12807

    Article  CAS  Google Scholar 

  105. Pace CN, Scholtz JM, Grimsley GR (2014) Forces stabilizing proteins. FEBS Lett 588:2177–2184

    Article  CAS  PubMed Central  Google Scholar 

  106. Carugo O (2016) When proteins are completely hydrated in crystals. Intl J Biol Macromol 89:137–143

    Article  CAS  Google Scholar 

  107. Krimmer SG, Cramer J, Betz M, Fridh V, Karlsson R, Heine A, Klebe G (2016) Rational design of thermodynamic and kinetic binding profiles by optimizing surface water networks coating protein-bound ligands. J Med Chem 59:10530–10548

    Article  CAS  PubMed  Google Scholar 

  108. Aoki K, Shiraki K, Hattori T (2016) Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility. Phys Chem Chem Phys 18:15060–15069

    Article  CAS  PubMed  Google Scholar 

  109. Comez L, Paolantoni M, Sassi P, Corezzi S, Morresi A, Fioretto D (2016) Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. Soft Matter 12:5501–5514

    Article  CAS  PubMed  Google Scholar 

  110. Bellissent-Funel M-C, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE (2016) Water determines the structure and dynamics of proteins. Chem Rev 116:7673–7697

    Article  CAS  PubMed  Google Scholar 

  111. Jha A, Ishii K, Udgaonkar JB, Tahara T, Krishnamoorthy G (2011) Exploration of the correlation between solvation dynamics and internal dynamics of a protein. Biochemistry 50:397–408

    Article  CAS  PubMed  Google Scholar 

  112. Pal SK, Peon J, Zewail AH (2002) Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci USA 99(4):1763–1768

    Article  CAS  PubMed  Google Scholar 

  113. Qin Y, Zhang L, Wang L, Zhong D (2017) Observation of the global dynamic collectivity of a hydration shell around apomyoglobin. J Phys Chem Lett 8:1124–1131

    Article  CAS  PubMed  Google Scholar 

  114. Shiraga K, Ogawa Y, Kondo N (2016) Hydrogen bond network of water around protein investigated with terahertz and infrared spectroscopy. Biophys J 111:2629–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci USA 104:20749–20752

    Article  PubMed  Google Scholar 

  116. Sushko O, Dubrovka R, Donnan RS (2015) Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater deistances than previously detected. J Chem Phys 142:055101

    Article  CAS  PubMed  Google Scholar 

  117. Ding T, Li R, Zeitler JA, Huber TL, Gladden LF, Middelberg APJ, Falconer RJ (2010) Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity. Opt Express 18(26):27431–27444

    Article  CAS  PubMed  Google Scholar 

  118. King JT, Arthur EJ, Brooks CL, Kubarych KJ (2013) Crowding induced collective hydration of biological macromolecules over extended distances. J Am Chem Soc 136:188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Glancy P, Beyermann WP (2010) Dielectric properties of fully hydrated nucleotides in the terahertz frequency range. J Chem Phys 132:245102

    Article  CAS  PubMed  Google Scholar 

  120. Heyden M, Bründermann E, Heugen U, Niehues G, Leitner DM, Havenith M (2008) Long-range influence of carbohydrates on the solvation dynamics of watersanswers from terahertz absorption measurements and molecular modeling simulations. J Am Chem Soc 130:5773–5779

    Article  CAS  PubMed  Google Scholar 

  121. Higgins MJ, Polcik M, Fukuma T, Sader JE, Nakayama Y, Jarvis SP (2006) Structured water layers adjacent to biological membranes. Biophys J 91:2532–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Grossmann C, Tintinger R, Zhu J, Maurer G (1995) Aqueous two-phase systems of poly(ethylene glycol) and dextran–experimental results and modeling of thermodynamic properties. Fluid Phase Equilib 106:111–138

    Article  CAS  Google Scholar 

  123. Basdogan Y, Keith JA (2018) A paramedic treatment for modeling explicitly solvated chemical reaction mechanisms. Chem Sci 9:5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pashley RM, Kitchener JA (1979) Surface forces in adsorbed multilayers of water on quartz. J Colloid Interface Sci 71(3):491–500

    Article  CAS  Google Scholar 

  125. Soper AK (2007) Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys 19:335206

    CAS  Google Scholar 

  126. J-m Zheng, Chin W-C, Khijniak E, Khijniak E Jr, Pollack GH (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interface Sci 127:19–27

    Article  CAS  Google Scholar 

  127. Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101:11007–11028

    Article  CAS  Google Scholar 

  128. Grunwald E, Comeford LL (1995) Thermodynamic mechanisms for enthalpy-entropy compensation. In: Gregory RB (ed) Protein-solvent interactions. Marcel Dekker, New York, pp 421–443

    Google Scholar 

  129. Sharp K (2001) Entropy–enthalpy compensation: fact or artifact? Prot Sci 10(3):661–667

    Article  CAS  Google Scholar 

  130. Lumry R (2003) Uses of enthalpy–entropy compensation in protein research. Biophys Chem 105:545–557

    Article  CAS  PubMed  Google Scholar 

  131. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37:2754–2794

    Article  PubMed  Google Scholar 

  132. Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed Engl 43:6596–6616

    Article  CAS  PubMed  Google Scholar 

  133. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed Engl 46:2366–2393

    Article  CAS  PubMed  Google Scholar 

  134. Cram DJ (1986) Preorganization—from solvents to spherands. Angew Chem Int Ed Engl 25(12):1039–1057

    Article  Google Scholar 

  135. Martell AE, Hancock RD, Motekaitis RJ (1994) Factors affecting stabilities of chelate, macrocyclic, and macrobicyclic complexes in solution. Coord Chem Rev 133:39–65

    Article  CAS  Google Scholar 

  136. Piguet C (2010) Five thermodynamic describers for addressing serendipity in the self-assembly of polynuclear complexes in solution. Chem Commun 46:6209–6231

    Article  CAS  Google Scholar 

  137. DiMaio J, Gibbs B, Munn D, Lefebvre J, Konishi Y (1990) Bifunctional thrombin inhibitors based on the sequence of hirudin45-65. J Biol Chem 265(35):21698–21703

    CAS  PubMed  Google Scholar 

  138. Fersht AR (1997) Nucleation mechanisms in protein folding. Curr Opin Struct Biol 7:3–9

    Article  CAS  PubMed  Google Scholar 

  139. Pappu RV, Srinivasan R, Rose GD (2000) The Flory isolated-pair hypothesis is not valid for polypeptide chains: implications for protein folding. Proc Natl Acad Sci USA 97:12565–12570

    Article  PubMed  Google Scholar 

  140. Fitzkee NC, Rose GD (2004) Reassessing random-coil statistics in unfolded proteins. Proc Natl Acad Sci USA 101:12497–12502

    Article  CAS  PubMed  Google Scholar 

  141. Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128(1):11–45

    Article  CAS  PubMed  Google Scholar 

  142. Figliuzzi M, Jacquier H, Schug A, Tenaillon O, Weigt M (2016) Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1. Mol Biol Evol 33(1):268–280

    Article  CAS  PubMed  Google Scholar 

  143. Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer M, Sander C, Marks DS (2017) Mutation effects predicted from sequence co-variation. Nat Biotech 35(2):128–135

    Article  CAS  Google Scholar 

  144. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem Rev 91(8):1721–2085

    Article  CAS  Google Scholar 

  145. Lashley MA, Ivanov AS, Bryantsev VS, Dai S, Hancock RD (2016) Highly preorganized ligand 1,10-phenanthroline-2,9-dicarboxylic acid for the selective recovery of uranium from seawater in the presence of competing vanadium species. Inorg Chem 55:10818–10829

    Article  CAS  PubMed  Google Scholar 

  146. Schneider H-J (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed Engl 48:3924–3977

    Article  CAS  PubMed  Google Scholar 

  147. Page MI, Jencks WP (1971) Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci USA 68:1678–1683

    Article  CAS  PubMed  Google Scholar 

  148. Newberry RW, Raines RT (2016) A prevalent intraresidue hydrogen bond stabilizes proteins. Nat Chem Biol 12(12):1084–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78(7):4046–4050

    Article  CAS  PubMed  Google Scholar 

  150. Cabbiness DK, Margerum DW (1969) Macrocyclic effect on the stability of copper(II) tetramine complexes. J Am Chem Soc 91(23):6540–6541

    Article  CAS  Google Scholar 

  151. Sokol LSWL, Ochrymowycz LA, Rorabacher DB (1981) Macrocyclic, ring size, and anion effects as manifested in the equilibrium constants and thermodynamic parameters of copper(II)-cyclic polythia ether complexes. Inorg Chem 20:3189–3195

    Article  CAS  Google Scholar 

  152. Mandolini L (1986) Intramolecular reactions of chain molecules. Adv Phys Org Chem 22:1–111

    CAS  Google Scholar 

  153. Illuminati G, Mandolini L, Masci B (1977) Ring-closure reactions. 9. Kinetics of ring formation from o-ω-bromoalkoxy phenoxides and o-ω-bromoalkyl phenoxides in the range of 11- to 24-membered rings. A Comparison with related cyclization series. J Am Chem Soc 99(19):6308–6312

    Article  CAS  Google Scholar 

  154. Smith GF, Margerum DW (1975) Diminution of the macrocyclic effect for nickel(II) complexes of thioethers in nonaqueous solvents. J C S Chem Commun 807–808

  155. Schwarzenbach G (1952) Der chelateffect. Helv Chim Acta 35(7):2344–2359

    Article  CAS  Google Scholar 

  156. Rubinson KA (2014) Small-angle neutron scattering of aqueous SrI2 suggests a mechanism for ion transport in molecular water. J Solut Chem 43:453–464

    Article  CAS  Google Scholar 

  157. Evstigneev MP, Lantushenkoa AO, Golovchenkoa IV (2016) Hidden entropic contribution in the thermodynamics of molecular complexation. Phys Chem Chem Phys 18:7617–7626

    Article  CAS  PubMed  Google Scholar 

  158. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Sherrill CD, Merz KMJ (2011) The energy computation paradox and ab initio protein folding. PLoS ONE 6(4):e18868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rabinowitch E (1937) Collision, co-ordination, diffusion and reaction velocity in condensed systems. Trans Farad Soc 33:1225–1233

    Article  CAS  Google Scholar 

  160. Laidler KJ (1987) Chemical kinetics. Harper & Row Publishers, New York

    Google Scholar 

  161. Feller W (1968) An introduction to probability theory and its applications, vol. I, 3rd edn. Wiler, New York, pp 67–97

  162. Owusu-Apenten RK (1995) A three-state heat-denaturation of bovine α-lactalbumin. Food Chem 52:131–133

    Article  CAS  Google Scholar 

  163. Wong K-B, Freund SMV, Fersht AR (1996) Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterisation of residual structure. J Mol Biol 259:805–818

    Article  CAS  PubMed  Google Scholar 

  164. Shortle D (1996) The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J 10(1):27–34

    Article  CAS  PubMed  Google Scholar 

  165. Zaidi FN, Nath U, Udgaonkar JB (1997) Multiple intermediates and transition states during protein unfolding. Nat Struct Biol 4(12):1016–1024

    Article  CAS  PubMed  Google Scholar 

  166. Zocchi G (1997) Proteins unfold in steps. Proc Natl Acad Sci USA 94:10647–10651

    Article  CAS  PubMed  Google Scholar 

  167. Bowler BE (2007) Thermodynamics of protein denatured states. Mol BioSyst 3:88–99

    Article  CAS  PubMed  Google Scholar 

  168. Jensen MR, Markwick PRL, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernado P, Blackledge M (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17:1169–1185

    Article  CAS  PubMed  Google Scholar 

  169. Stefanowicz P, Petry-Podgorska I, Kowelewska K, Jaremko L, Jreemko M, Szewczuk Z (2010) Electrospray ionization mass spectrometry as a method for studying the high-pressure denaturation of proteins. Biosci Rep 30:91–99

    Article  CAS  Google Scholar 

  170. Receveur-Bréchot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Prot Peptide Sci 13:55–75

    Article  Google Scholar 

  171. Lumry R, Biltonen R (1966) Validity of the “two-state” hypothesis for conformational transitions of proteins. Biopolymers 4:917–944

    Article  CAS  PubMed  Google Scholar 

  172. Amor BRC, Schaub MT, Yaliraki SN, Barahona M (2016) Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nat Commun 7:12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rajasekaran N, Suresh S, Gopi S, Raman K, Naganathan AN (2017) A general mechanism for the propagation of mutational effects in proteins. Biochemistry 56:294–305

    Article  CAS  PubMed  Google Scholar 

  174. Ayaz P, Munyoki S, Geyer EA, Piedra1 F-A, Vu1 ES, Bromberg R, Otwinowski Z, Grishin NV, Brautigam CA, Rice LM (2014) A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3:03069

  175. Hamilton CL, Niemann C, Hammond GS (1966) A quantitative analysis of the binding of N-acyl derivatives of α-aminoamides by α-chymotrypsin. Proc Natl Acad Sci USA 55(3):664–669

    Article  CAS  PubMed  Google Scholar 

  176. Niemann C (1964) Alpha-chymotrypsin and the nature of enzyme catalysis. Science 143:1287–1296

    Article  CAS  PubMed  Google Scholar 

  177. Vitagliano L, Merlino A, Zagari A, Mazzarella L (2000) Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2′,5′)guanosine. Protein Sci 9:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Freire E (1999) The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc Natl Acad Sci USA 96:10118–10122

    Article  CAS  PubMed  Google Scholar 

  179. Pan H, Lee JC, Hilser VJ (2000) Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc Natl Acad Sci USA 97(22):12020–20125

    Article  CAS  PubMed  Google Scholar 

  180. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433–443

    Article  CAS  PubMed  Google Scholar 

  181. Long D, Brüschweiler R (2011) Atomistic kinetic model for population shift and allostery in biomolecules. J Am Chem Soc 133:18999–19005

    Article  CAS  PubMed  Google Scholar 

  182. Wei G, Xi W, Nussinov R, Ma B (2016) Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem Rev 116:6516–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dagliyan O, Tarnawski M, Chu P-H, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM (2016) Engineering extrinsic disorder to control protein activity in living cells. Science 354(6318):1441–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Segel IH (1993) Enzyme kinetics. Wiley, New York

    Google Scholar 

  185. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 760(April 29):799–802

    Article  Google Scholar 

  186. Keller BU, Hartshorne RP, Talvenheimo JA, Catterall WA, Montal M (1986) Sodium channels in planar lipid bilayers: channel gating kinetics of purified sodium channels modified by batrachotoxin. J Gen Physiol 88:1–23

    Article  CAS  PubMed  Google Scholar 

  187. Rubinson KA (1992) Steady-state kinetics of solitary bachtrachotoxin-treated sodium channels. Kinetics on a bounded continuum of polymer conformations. Biophys J 61:463–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Eggeling C, Fries JR, Brand L, Günther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci USA 95:1556–1561

    Article  CAS  PubMed  Google Scholar 

  189. Xie XS, Lu HP (1999) Single-molecule enzymology. J Biol Chem 274:15967–15970

    Article  CAS  PubMed  Google Scholar 

  190. English BP, Min W, van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie S (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2(2):87–94

    Article  CAS  PubMed  Google Scholar 

  191. Volkman BF, Lipson D, Wemmer DE, Kern D (2001) Two-state allosteric behavior in a single-domain signaling protein. Science 291(23 March):2429–2433

    Article  CAS  PubMed  Google Scholar 

  192. Lisi GP, Loria JP (2016) Solution NMR spectroscopy for the study of enzyme allostery. Chem Rev 116:6323–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Otrusinová O, Demo G, Padrta P, Jaseňáková Z, Pekárová B, Gelová Z, Szmitkowska A, Kadeřávek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwaï H, Wimmerová M, Hejátko J, Źídek L (2017) Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana. J Biol Chem 292(42):17525–17540

    Article  PubMed  PubMed Central  Google Scholar 

  194. Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Eng 33:2375–2378

    Article  Google Scholar 

  195. Warshel A (1978) Energetics of enzyme catalysis. Proc Natl Acad Sci USA 75(11):5250–5254

    Article  CAS  PubMed  Google Scholar 

  196. Liu H, Warshel A (2007) The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46:601–6025

    Google Scholar 

  197. Fried SD, Bagchi S, Goxer SG (2014) Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346(6216):1510–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fried SD, Boxer SG (2017) Electric fields and enzyme catalysis. Annu Rev Biochem 86:387–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Morgenstern A, Jaszai M, Eberhart ME, Alexandrova AN (2017) Quantified electrostatic preorganization in enzymes using the geometry of the electron charge density. Chem Sci 8:5010–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Blomberg MRA, Siegbahn PEM (2010) Quantum chemistry as a tool in bioenergetics. Biochim Biophys Acta 1797:129–142

    Article  CAS  PubMed  Google Scholar 

  201. Kim KH, Kim JG, Nozawa S, Sato T, Oang KY, Kim TW, Jo HKJ, Park S, Song C, Sato T, Ogawa K, Togashi T, Tono K, Yabashi M, Ishikawa T, Kim J, Ryoo R, Kim J, Ihee H, S-i Adachi (2015) Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518(7539):385–389

    Article  CAS  PubMed  Google Scholar 

  202. Shiró G, Natali F, Cupane A (2012) Physical origin of anharmonic dynamics in proteins: new insights from resolution-dependent neutron scattering on homomeric polypeptides. Phys Rev Lett 109:128102

    Article  CAS  Google Scholar 

  203. Morresi A, Mariani L, Distefano MR, Giorgini MG (1995) Vibrational relaxation processes in isotropic molecular liquids. A critical comparison. J Raman Spec 26:179–216

    Article  CAS  Google Scholar 

  204. Lambert FL (2002) Entropy is simple, qualitatively. J Chem Educ 79(10):1241–1246

    Article  CAS  Google Scholar 

  205. Takeuchi H, Allen G, Suzuki S, Dianoux AJ (1980) Low frequency vibraions in solid n-butane and n-hexane by incoherent inelastic neutron scattering. Chem Phys 51:197–203

    Article  CAS  Google Scholar 

  206. Giraud G, Karolin J, Wynne K (2003) Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES spectroscopy. Biophys J 85:1903–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181:423–447

    Article  CAS  PubMed  Google Scholar 

  208. Silverstein RM, Bassler GC, Morrill TC (1974) Spectrometric identification of organic compounds, 3rd edn. Wiley, Ch, p 3

    Google Scholar 

  209. Schachtschneider JH, Snyder RG (1963) Vibrational analysis of the n-paraffins-II. Normal co-ordinate calculations. Spectrochim Acta 19:117–168, esp. Table 114

  210. Scott DW, El. Sabban MZ (1969) A valence force field for aliphatic sulfur compounds: alkanethiols and thioalkanes. J Mol Spectrosc 30:317–337, esp. Table II

  211. Herzberg G (1950) Spectra of diatomic molecules, 2nd edn. Van Nostrand, Princeton, NJ, p 91

    Google Scholar 

  212. Ginn SGW, Wood JL (1967) The intermolecular stretching vibration of some hydrogen-bonded complexes. Spectrochim Acta 23A:611–625

    Article  Google Scholar 

  213. Miyazawa T, Pitzer KS (1959) low frequency vibrations, polarizability and entropy of carboxylic acid dimers. J Am Chem Soc 81:74–79

    Article  CAS  Google Scholar 

  214. Matsushima N, Hikichi K, Tsutsumi A, Kaneko M (1976) X-ray scattering of synthetic poly(α-amino acid)s in the solid state. III. Temperature dependence of the 1.5 Å-meridional reflection of the α-helix. Polymer J 8:88–95

    Article  CAS  Google Scholar 

  215. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285

    Article  CAS  PubMed  Google Scholar 

  216. Efimova YM, Haemers S, Wierczinski B, Norde W, van Well AA (2006) Stability of globular proteins in H2O and D2O. Biopolymers 85(3):264–273

    Article  CAS  Google Scholar 

  217. Lassalle MW, Yamada H, Akasaka K (2000) The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by 1H NMR. J Mol Biol 298:293–302

    Article  CAS  PubMed  Google Scholar 

  218. Klotz IM (1996) Equilibrium constants and free energies in unfolding of proteins in urea solutions. Proc Natl Acad Sci USA 93:14411–14415

    Article  CAS  PubMed  Google Scholar 

  219. Ahmad F, Bigelow CC (1982) Estimation of the free energy of stabilization of ribonuclease A, lysozyme, α-lactalbumin, and myoglobin. J Biol Chem 257(21):12935–12938

    CAS  PubMed  Google Scholar 

  220. Nojima H, Ikai A, Oshima T, Noda H (1977) Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change. J Mol Biol 116:429–442

    Article  CAS  PubMed  Google Scholar 

  221. Privalov PL, Khechinashvili NN (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684

    Article  CAS  PubMed  Google Scholar 

  222. Beadle BM, McGovern SL, Patera A, Shoichet BK (1999) Functional analyses of AmpC β-lactamase through differential stability. Prot Sci 8:1816–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am pleased to thank the following colleagues for reading and commenting on the typescript: Lawrence Prochaska, Gerald Alter, David Hoogerheide, Joseph Hubbard, Lawrence Berliner, Susana Teixeira, and Curt Meuse, and to Karl Irikura for calculating the propane’s potential. This work utilized neutron scattering facilities supported in part by the National Science Foundation under Agreement No. DMR-1508249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Rubinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Relations of the Energies, Force Constants, Gaussian Widths, and Entropies

For the stretched, connected springs of Fig. 3,

$$ - k_{w} \,\Delta x_{w} = F_{w} = - F_{s} = k_{s} \,\Delta x_{s} $$
(15)

where the subscript w represents properties of the weak spring on the left, and subscript s represents the properties of the strong spring on the right. F is the force, k the force constant, and Δx the distance the point of connection resides from its position at the rest point of the unconnected spring. The signs of Δxs and Δxw are opposite.

The internal energies involved in stretching each spring from its rest point so the bond can be formed are, respectively,

$$ U_{w} = \tfrac{1}{2}k_{w\,} \Delta x_{w}^{2} ;\quad U_{s} = \tfrac{1}{2}k_{s\,} \Delta x_{s}^{2} $$
(16)

From Eq. 15, we know that Δxs = − (kw/ksxw and, substituting for Δxs in Eq. 16, then Us = ½ (k 2w /ks) Δx 2w . Putting Δx 2w  = 2Us (ks/k 2w ) into Eq. 16 and by rearranging get

$$ U_{w} = \frac{{k_{s\,} }}{{k_{w\,} }}\,U_{s} $$
(17)

which is Eq. 2 in the main text.

The quadratic potentials of Fig. 4 show the energies versus stretch position for a reactive group attached to a polypeptide and elastically restrained by it. This group has a greater probability of being at the center, unstretched position than at the ends. The quantitative probability distribution of the possible locations of the binding groups are derived next.

With the energy U of the binding group at a location Δx from the minimum of the polymer potential U is described by

$$ U = U_{0P} + \frac{1}{2}k\left( {\Delta x} \right)^{2} $$
(18)

where k is the Hookean force constant, Δx is the distance moved from the minimum of the potential, and U0P is the energy minimum of the polymer potential. For the remainder of this derivation, we assign the value of U0P = 0. To simplify the appearance of the equations, from now on, x is used in place of Δx.

The normalized probability distribution of the population over the parabola is

$$ \rho (x) = \left( {\sqrt {2\pi k_{B} T/k} } \right)^{ - 1} \exp \left( { - \frac{{kx^{2} }}{{2k_{B} T}}} \right) $$
(19)

where kB is the Boltzmann constant, and k the force constant. This is a Gaussian centered at the energy minimum. This Gaussian distribution can be characterized by its standard deviation. By comparing Eq. 19 to the general equation for a normalized Gaussian distribution

$$ f(x) = \frac{1}{{\sigma \sqrt {2\pi } }}\,\,\exp \left( { - \frac{{x^{2} }}{{2\sigma^{2} }}} \right) $$
(20)

shows that the Gaussian’s characterizing width

$$ \sigma = \sqrt {\frac{{k_{B} T}}{k}} $$
(21)

Applying Eq. 21 for both springs of Fig. 4 at the same kBT, we can find the three equalities of Eq. 22

$$ \sigma_{w}^{2} k_{w} = k_{B} T = \sigma_{s}^{2} k_{s} ;\quad \sqrt {\frac{{k_{s} }}{{k_{w} }}} = \frac{{\sigma_{w} }}{{\sigma_{s} }};\quad \frac{{k_{s} }}{{k_{w} }} = \frac{{\sigma_{w}^{2} }}{{\sigma_{s}^{2} }} $$
(22)

The σ values are a measure of 1-D displacement, so ΔS = − R ln (σws) expresses the entropy change between the site before the bond is formed and when bonded. In addition, Eqs. 21 and 22 show that if the force constant changes, so does the width. So the protein’s structural entropy can be changed by stiffening the tether. Possible molecular mechanisms to do so include structuring the chain by intrachain hydrogen bonding or forming intramolecular bonds or bonding with adjacent molecules to shorten or strengthen the polymer spring.

In three dimensions, this change in σ transforms to a difference in accessible volume. For a reaction of bond formation, let the smaller, bonded volume accessible be V1, and the initial, larger unbonded accessible volume be V2. Then,

$$ \Delta S = R\,\;\ln \frac{{V_{2} }}{{V_{1} }} $$

which appears as Eqs. 3 and 10a and 10b. This result only holds for the quadratic approximation for a continuum system for each binding group [83] and the approximation of homogeneous distributions within the volumes. As the attachment becomes looser, such as on a “long” unstructured polypeptide, the gaussian distribution may need to be explicitly included.

Appendix 2

2.1 Another Experimental Example of Fast Bond Formation

Another experimental example for bond formation times (compared to relatively slow mass migration) is for bonds between gold atoms, where the preorganization is fulfilled by the proximity of weak clusters of Au(CN) 2 in water. Kim et al. [201] used femtosecond x-ray scattering to follow photoactivated bond formation between the gold atoms that reside at van der Wall distances within these Au(CN) 2 clusters. The bond formation occurred within about a picosecond over which time three adjacent golds having distances of 3.9 Å and 3.3 Å from the central gold and forming a 101° angle transformed to a linear structure with both bond distances 2.8 Å. (This bond-forming process is surprisingly fast when we realize the characteristic diffusion distance over that time at ambient temperature is around 0.6 Å.) This measurement of the bond-forming supports the fraction-of-an-Angstrom motion of bond formation/breaking in solution.

Appendix 3

3.1 More About Separating Entropy and Enthalpy and the Importance of k B T

At the end of Sect. 2.3, it was noted that molecular structures can be altered by energies less than kBT—an entropic mechanism—or altered by energies greater than kBT that contribute enthalpy. For the quantitative support of that description, I will be switching back and forth between molecular lengthscale descriptions and descriptions using terms that ordinarily only apply to macroscopic systems. When descriptions involve molecular characteristics such as vibrational modes, the description should be interpreted as being that of a single molecule, which resides in a form that is an average of the ensemble from which the molecule is taken. Similarly, since a single molecule is assumed to represent the ensemble average, entropy will be used for single-molecule differences that are due to entropy on the macro scale. In addition, when thermodynamic terms are used on the molecular scale, enthalpy has no clear meaning since pressure-volume (PV) work is part of the enthalpy. Nevertheless since free energy involves both the enthalpy and entropy, let us use enthalpy as the term and ignore the difference between internal energy and enthalpy.

To clarify the nature of entropy, consider a protein residing in its equilibrium form that exhibits many low energy vibrations [202] (i.e., < 200 cm−1 at 25 °C). Now add some energy within a few ps [42, 101, 203]. The added energy first partitions among these same vibrational modes and eventually also migrates and adds to the solvent’s vibrations, rotations, and translations that define the temperature. The added energy is eventually distributed in a volume so large relative to the protein that the temperature can be considered unchanged. This added energy cannot be recovered because no temperature difference remains which would be able to drive some energy back to, e.g., change the molecule’s structure. The energy distributed to these low-energy modes of the protein and of the water is, then, the entropic part; the entropy is the energy “dispersed” or “dissipated,” [204] which are useful terms to describe the progression of events described in this paragraph.

On the other hand, if the work going into the molecule is distributed into modes that are not occupied at kBT (say, arbitrarily, 10 kBT) or changes the Boltzmann occupancy of some modes at lower energies but still greater than kBT, then the energy put in can be recovered by removal from the same modes, which drops the molecular energy to lower states. This energy can be recovered since the temperatures of those modes—as characterized by the Boltzmann distribution—are greater than the surroundings, which allows the energy to flow back. This recoverable energy is the enthalpic part.

While energy added to the protein can flow into modes that can be characterized as either entropic or enthalpic, the delineation between the two is not sharp [189]. The reason the boundary remains indistinct is that while the ambient temperature is the dividing line, the Boltzmann distribution indicates that energy states greater than kBT are also occupied at the system temperature. (As mentioned earlier, a state with energy kBT above ground is 37% as populated as the ground state, and one at 2kBT is 14% as populated.) As a result, some normally unrecoverable energy (when ΔT = 0) can be recoverable by removing energy from the partially occupied higher-energy states. This blurring in energy may be reasonably assumed to be about 3 kBT wide. If no states exist in that range, the enthalpy-entropy separation is sharp. For a protein in solution, this sharp separation is not possible.

One reason for this impossibility is that the longer the length scale of a vibration, the lower the vibrational energy levels that are available in the (molecule + solvent). This relationship can be seen in column 3 of Table 1. The lower energy vibrations are associated with larger groups of bonded atoms: examples are librations of groups of four atoms and vibrations that occur over so many atoms they are classified as acoustic modes [205,206,207]. This lengthscale-frequency relationship brings us full circle to the differences between distorting alkane chains being enthalpic (propane) and entropic (polyethylene) as discussed in Sect. 2.2. The long chain has low energy vibrational modes that can be excited by the random thermal motions of the surroundings. The short chain can have only the methyl rotations excited this way. The indistinct boundary between enthalpy and entropy is confirmed since chains with lengths greater than propane decrease the enthalpic contribution, and shortening the polyethylene eventually increases the enthalpic contribution until reaching some length of chain that has both mechanisms contributing equally to the restoring force. The boundary of enthalpic and entropic contributions is indistinct.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinson, K.A. Why Proteins are Big: Length Scale Effects on Equilibria and Kinetics. Protein J 38, 95–119 (2019). https://doi.org/10.1007/s10930-019-09822-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09822-x

Keywords

Navigation