Skip to main content

Advertisement

Log in

Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet 24(1):3–15

    Article  CAS  PubMed  Google Scholar 

  2. Tonge PJ (2018) Drug–target kinetics in drug discovery. ACS Chem Neurosci 9(1):29–39

    Article  CAS  PubMed  Google Scholar 

  3. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug–receptor binding kinetics. Drug Discov Today 18(13):667–673. https://doi.org/10.1016/j.drudis.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  4. Vauquelin G, Charlton SJ (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 161(3):488–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swinney DC (2008) Applications of binding kinetics to drug discovery. Pharmaceut Med 22(1):23–34. https://doi.org/10.1007/BF03256679

    Article  Google Scholar 

  6. Price D, Sharma A, Cerasoli F (2009) Biochemical properties, pharmacokinetics and pharmacological response of tiotropium in chronic obstructive pulmonary disease patients. Expert Opin Drug Metab Toxicol 5(4):417–424

    Article  CAS  PubMed  Google Scholar 

  7. Dowling MR, Charlton SJ (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor. Br J Pharmacol 148(7):927–937. https://doi.org/10.1038/sj.bjp.0706819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Noord JA, Smeets JJ, Custers FL, Korducki L, Cornelissen PJ (2002) Pharmacodynamic steady state of tiotropium in patients with chronic obstructive pulmonary disease. Eur Respir J 19(4):639–644. https://doi.org/10.1183/09031936.02.00238002

    Article  CAS  PubMed  Google Scholar 

  9. Kapur S, Seeman P (2000) Antipsychotic agents differ in how fast they come off the dopamine D2 receptors Implications for atypical antipsychotic action. J Psychiatry Neurosci 25(2):161–166

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Daryaee F, Tonge PJ (2019) Pharmacokinetic–pharmacodynamic models that incorporate drug–target binding kinetics. Curr Opin Chem Biol 50:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuseau E, Sheiner LB (1984) Simultaneous modeling of pharmacokinetics and pharmacodynamics with a nonparametric pharmacodynamic model. Clin Pharmacol Ther. https://doi.org/10.1038/clpt.1984.104

    Article  PubMed  Google Scholar 

  12. Shimada S, Nakajima Y, Yamamoto K, Sawada Y, Iga T (1996) Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol Pharm Bull 19(3):430–437

    Article  CAS  PubMed  Google Scholar 

  13. Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov 5(9):730–739

    Article  CAS  PubMed  Google Scholar 

  14. Dahl G, Akerud T (2013) Pharmacokinetics and the drug–target residence time concept. Drug Discov Today 18(15–16):697–707

    Article  CAS  PubMed  Google Scholar 

  15. Ariens EJ (1954) Affinity and intrinsic activity in the theory of competitive inhibition i Problems and theory. Arch Int Pharmacodyn Ther 99(1):32–49

    CAS  PubMed  Google Scholar 

  16. Dierynck I, De Wit M, Gustin E, Keuleers I, Vandersmissen J, Hallenberger S, Hertogs K (2007) Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol 81(24):13845–13851. https://doi.org/10.1128/jvi.01184-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hightower KE, Wang R, DeAnda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HL III, Broderick T, Sigethy S (2011) Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother 55(10):4552–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fierens FL, Vanderheyden PM, Roggeman C, Vande Gucht P, De Backer JP, Vauquelin G (2002) Distinct binding properties of the AT(1) receptor antagonist [(3)H]candesartan to intact cells and membrane preparations. Biochem Pharmacol 63(7):1273–1279. https://doi.org/10.1016/s0006-2952(02)00859-6

    Article  CAS  PubMed  Google Scholar 

  19. Le MT, Pugsley MK, Vauquelin G, Van Liefde I (2007) Molecular characterisation of the interactions between olmesartan and telmisartan and the human angiotensin II AT1 receptor. Br J Pharmacol 151(7):952–962. https://doi.org/10.1038/sj.bjp.0707323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Motulsky HJ, Mahan L (1984) The kinetics of competitive radioligand binding predicted by the law of mass action. Mol Pharmacol 25(1):1–9

    CAS  PubMed  Google Scholar 

  21. Bosma R, Witt G, Vaas LAI, Josimovic I, Gribbon P, Vischer HF, Gul S, Leurs R (2017) The target residence time of antihistamines determines their antagonism of the G protein-coupled histamine H1 receptor. Front Pharmacol 8:667. https://doi.org/10.3389/fphar.2017.00667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carboni L, Negri M, Michielin F, Bertani S, Fratte SD, Oliosi B, Cavanni P (2012) Slow dissociation of partial agonists from the D2 receptor is linked to reduced prolactin release. Int J Neuropsychopharmacol 15(5):645–656

    Article  CAS  PubMed  Google Scholar 

  23. Kati WM, Montgomery D, Carrick R, Gubareva L, Maring C, McDaniel K, Steffy K, Molla A, Hayden F, Kempf D, Kohlbrenner W (2002) In vitro characterization of A-315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and influenza virus replication. Antimicrob Agents Chemother 46(4):1014–1021. https://doi.org/10.1128/AAC.46.4.1014-1021.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weiss M, Kang W (2004) Inotropic effect of digoxin in humans: mechanistic pharmacokinetic/pharmacodynamic model based on slow receptor binding. Pharm Res 21(2):231–236. https://doi.org/10.1023/b:pham.0000016236.36210.a6

    Article  CAS  PubMed  Google Scholar 

  25. Äbelö A, Gabrielsson J, Holstein B, Eriksson UG, Holmberg J, Karlsson MO (2001) Pharmacodynamic modelling of reversible gastric acid pump inhibition in dog and man. Eur J Pharm Sci 14(4):339–346

    Article  PubMed  Google Scholar 

  26. Abelö A, Andersson M, Holmberg AA, Karlsson MO (2006) Application of a combined effect compartment and binding model for gastric acid inhibition of AR-HO47108: a potassium competitive acid blocker, and its active metabolite AR-HO47116 in the dog. Eur J Pharm Sci 29(2):91–101. https://doi.org/10.1016/j.ejps.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  27. Yassen A, Olofsen E, Dahan A, Danhof M (2005) Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J Pharmacol Exp Ther 313(3):1136–1149

    Article  CAS  PubMed  Google Scholar 

  28. Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M (2006) Mechanism-based pharmacokinetic-pharmacodynamic modeling of the respiratory-depressant effect of buprenorphine and fentanyl in rats. J Pharmacol Exp Ther 319(2):682. https://doi.org/10.1124/jpet.106.107953

    Article  CAS  PubMed  Google Scholar 

  29. Yassen A, Olofsen E, Romberg R, Sarton E, Danhof M, Dahan A (2006) Mechanism-based pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine in healthy volunteers. Anesthesiology 104(6):1232–1242. https://doi.org/10.1097/00000542-200606000-00019

    Article  CAS  PubMed  Google Scholar 

  30. Yassen A, Olofsen E, Romberg R, Sarton E, Teppema L, Danhof M, Dahan A (2007) Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther 81(1):50–58. https://doi.org/10.1038/sj.clpt.6100025

    Article  CAS  PubMed  Google Scholar 

  31. Wagner J (1968) Kinetics of pharmacologic response I Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 20(2):173–201

    Article  CAS  PubMed  Google Scholar 

  32. Krzyzanski W, Jusko WJ (1998) Integrated functions for four basic models of indirect pharmacodynamic response. J Pharm Sci 87(1):67–72

    Article  CAS  PubMed  Google Scholar 

  33. Krzyzanski W, Jusko WJ (1998) Characterization of pharmacodynamic recession slopes for direct and indirect response models. J Pharmacokinet Biopharm 26(4):409–436

    Article  CAS  PubMed  Google Scholar 

  34. Van Liefde I, Vauquelin G (2009) Sartan–AT1 receptor interactions: in vitro evidence for insurmountable antagonism and inverse agonism. Mol Cell Endocrinol 302(2):237–243

    Article  PubMed  Google Scholar 

  35. Vanderheyden PM, Fierens FL, De Backer J, Vauquelin G (2000) Reversible and syntopic interaction between angiotensin receptor antagonists on Chinese hamster ovary cells expressing human angiotensin II type 1 receptors. Biochem Pharmacol 59(8):927–935. https://doi.org/10.1016/s0006-2952(99)00403-7

    Article  CAS  PubMed  Google Scholar 

  36. Verheijen I, Fierens FL, Debacker JP, Vauquelin G, Vanderheyden PM (2000) Interaction between the partially insurmountable antagonist valsartan and human recombinant angiotensin II type 1 receptors. Fundam Clin Pharmacol 14(6):577–585. https://doi.org/10.1111/j.1472-8206.2000.tb00443.x

    Article  CAS  PubMed  Google Scholar 

  37. Gleiter CH, Mörike KE (2002) Clinical pharmacokinetics of candesartan. Clin Pharmacokinet 41(1):7–17

    Article  CAS  PubMed  Google Scholar 

  38. Shibouta Y, Inada Y, Ojima M, Wada T, Noda M, Sanada T, Kubo K, Kohara Y, Naka T, Nishikawa K (1993) Pharmacological profile of a highly potent and long-acting angiotensin II receptor antagonist, 2-ethoxy-1-[[2’-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl]-1H-benzimidazole-7-carboxylic acid (CV-11974), and its prodrug,(+/-)-1-(cyclohexyloxycarbonyloxy)-ethyl 2-ethoxy-1-[[2’-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl]-1H-benzimidazole-7-carboxylate (TCV-116). J Pharmacol Exp Ther 266(1):114–120

    CAS  PubMed  Google Scholar 

  39. Delacrétaz E, Nussberger J, Biollaz J, Waeber B, Brunner HR (1995) Characterization of the angiotensin II receptor antagonist TCV-116 in healthy volunteers. Hypertension 25(1):14–21

  40. Reddy VP, Kozielska M, Johnson M, Vermeulen A, de Greef R, Liu J, Groothuis GM, Danhof M, Proost JH (2011) Structural models describing placebo treatment effects in schizophrenia and other neuropsychiatric disorders. Clin Pharmacokinet 50(7):429–450

    Article  Google Scholar 

  41. Bialer M (1980) A simple method for determining whether absorption and elimination rate constants are equal in the one-compartment open model with first-order processes. J Pharmacokinet Biopharm 8(1):111–113. https://doi.org/10.1007/BF01059453

    Article  CAS  PubMed  Google Scholar 

  42. Church MK (2016) Allergy histamine and antihistamines Handb Exp Pharmaco. Springer International Publishing, Cham

    Google Scholar 

  43. Cuvillo Bernal AD, Mullol I Miret J, Bartra Tomàs J, Dávila I, Jáuregui I, Montoro J, Sastre J, Valero A (2006) Comparative pharmacology of the H1 antihistamines. J Investig Allergol Clin Immunol 16:3–12

    Google Scholar 

  44. Desager J-P, Horsmans Y (1995) Pharmacokinetic-pharmacodynamic relationships of H1-antihistamines. Clin Pharmacokinet 28(5):419–432

    Article  CAS  PubMed  Google Scholar 

  45. Leysen JE, Gommeren W, Janssen PF, Janssen PA (1991) Comparative study of central and peripheral histamine-H1 receptor binding in vitro and ex vivo of non-sedating antihistamines and of noberastine, a new agent. Drug Dev Res 22(2):165–178

    Article  CAS  Google Scholar 

  46. Gillard M, Van Der Perren C, Moguilevsky N, Massingham R, Chatelain P (2002) Binding characteristics of cetirizine and levocetirizine to human H(1) histamine receptors: contribution of Lys(191) and Thr(194). Mol Pharmacol 61(2):391–399. https://doi.org/10.1124/mol.61.2.391

    Article  CAS  PubMed  Google Scholar 

  47. Church MK, Gillard M, Sargentini-Maier ML, Poggesi I, Campbell A, Benedetti MS (2009) From pharmacokinetics to therapeutics. Drug Metab Rev 41(3):455–474

    Article  CAS  PubMed  Google Scholar 

  48. Wood-Baker R, Emanuel M, Hutchinson K, Howarth P (1993) The time course of action of three differing doses of noberastine, a novel H1-receptor antagonist, on histamine-induced skin wheals and the relationship to plasma drug concentrations in normal human volunteers. Br J Clin Pharmacol 35(2):166

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vauquelin G (2016) Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding. Br J Pharmacol 173(15):2319–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fierens F, Vanderheyden PM, De Backer JP, Vauquelin G (1999) Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected [correction of tranfected] Chinese hamster ovary cells. Eur J Pharmacol 367(2–3):413–422. https://doi.org/10.1016/s0014-2999(98)00965-0

    Article  CAS  PubMed  Google Scholar 

  51. Hoare SRJ, Fleck BA, Williams JP, Grigoriadis DE (2020) The importance of target binding kinetics for measuring target binding affinity in drug discovery: a case study from a CRF(1) receptor antagonist program. Drug Discov Today 25(1):7–14. https://doi.org/10.1016/j.drudis.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  52. Gooljarsingh LT, Fernandes C, Yan K, Zhang H, Grooms M, Johanson K, Sinnamon RH, Kirkpatrick RB, Kerrigan J, Lewis T (2006) A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues. PNAS 103(20):7625–7630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Napier C, Sale H, Mosley M, Rickett G, Dorr P, Mansfield R, Holbrook M (2005) Molecular cloning and radioligand binding characterization of the chemokine receptor CCR5 from rhesus macaque and human. Biochem Pharmacol 71(1–2):163–172. https://doi.org/10.1016/j.bcp.2005.10.024

    Article  CAS  PubMed  Google Scholar 

  54. Hoare SR (2021) The problems of applying classical pharmacology analysis to modern in vitro drug discovery assays: slow binding kinetics and high target concentration. SLAS Discov 26(7):835–850

    Article  CAS  PubMed  Google Scholar 

  55. Morrison JF, Walsh CT (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61:201–301. https://doi.org/10.1002/9780470123072.ch5

    Article  CAS  PubMed  Google Scholar 

  56. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532. https://doi.org/10.1023/a:1014414520282

    Article  CAS  PubMed  Google Scholar 

  57. Slater JW, Zechnich AD, Haxby DG (1999) Second-generation antihistamines. Drugs 57(1):31–47

    Article  CAS  PubMed  Google Scholar 

  58. Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (2002) Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 29(1):1–24. https://doi.org/10.1023/a:1015765201129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220(1219):141–162

    Article  CAS  PubMed  Google Scholar 

  60. Vanderheyden PM, Verheijen I, Fierens FL, Backer JP, Vauquelin G (2000) Binding characteristics of [(3)H]-irbesartan to human recombinant angiotensin type 1 receptors. J Renin Angiotensin Aldosterone Syst 1(2):159–165. https://doi.org/10.3317/jraas.2000.020

    Article  CAS  PubMed  Google Scholar 

  61. Israili Z (2000) Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 14(1):S73–S86

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Mo E, Chen L (2022) Pharmacokinetics and bioequivalence evaluation of 2 olmesartan medoxomil and amlodipine besylate fixed-dose combination tablets in healthy Chinese volunteers under fasting and fed conditions. Clin Pharmacol Drug Dev. https://doi.org/10.1002/cpdd.1086

    Article  PubMed  Google Scholar 

  63. Church DS, Church MK (2011) Pharmacology of antihistamines. World Allergy Organ J 4(3 Suppl):S22-27. https://doi.org/10.1097/WOX.0b013e3181f385d9

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anthes JC, Gilchrest H, Richard C, Eckel S, Hesk D, West RE Jr, Williams SM, Greenfeder S, Billah M, Kreutner W, Egan RE (2002) Biochemical characterization of desloratadine, a potent antagonist of the human histamine H(1) receptor. Eur J Pharmacol 449(3):229–237. https://doi.org/10.1016/s0014-2999(02)02049-6

    Article  CAS  PubMed  Google Scholar 

  65. Meier E, Narvekar A, Iyer GR, DuBiner HB, Vutikullird A, Wirta D, Sall K (2017) Pharmacokinetics and safety of olopatadine hydrochloride 0.77% in healthy subjects with asymptomatic eyes: data from 2 independent clinical studies. Clin Ophthalmol. https://doi.org/10.2147/OPTH.S126690

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kwon O-S, Kim H-J, Pyo H, Chung S-J, Chung YB (2005) Determination of mequitazine in human plasma by gas-chromatography/mass spectrometry with ion-trap detector and its pharmacokinetics after oral administration to volunteers. Arch Pharm Res 28(10):1190–1195

    Article  CAS  PubMed  Google Scholar 

  67. Moulton BC, Fryer AD (2011) Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br J Pharmacol 163(1):44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Horhota ST, van Noord JA, Verkleij CB, Bour LJ, Sharma A, Trunk M, Cornelissen PJ (2015) In vitro, pharmacokinetic, pharmacodynamic, and safety comparisons of single and combined administration of tiotropium and salmeterol in COPD patients using different dry powder inhalers. AAPS J 17(4):871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abernethy DR (1992) Pharmacokinetics and pharmacodynamics of amlodipine. Cardiology 80:31–36

    Article  PubMed  Google Scholar 

  70. Gossas T, Vrang L, Henderson I, Sedig S, Sahlberg C, Lindström E, Danielson UH (2012) Aliskiren displays long-lasting interactions with human renin. Naunyn Schmiedebergs Arch Pharmacol 385(2):219–224

    Article  CAS  PubMed  Google Scholar 

  71. Luft FC, Weinberger MH (2008) Antihypertensive therapy with aliskiren. Kidney Int 73(6):679–683. https://doi.org/10.1038/sj.ki.5002732

    Article  CAS  PubMed  Google Scholar 

  72. Boas RA, Villiger JW (1985) Clinical actions of fentanyl and buprenorphine the significance of receptor binding. Br J Anaesth 57(2):192–196. https://doi.org/10.1093/bja/57.2.192

    Article  CAS  PubMed  Google Scholar 

  73. Elkader A, Sproule B (2005) Buprenorphine. Clin Pharmacokinet 44(7):661–680

    Article  CAS  PubMed  Google Scholar 

  74. Hale JJ, Mills SG, MacCoss M, Finke PE, Cascieri MA, Sadowski S, Ber E, Chicchi GG, Kurtz M, Metzger J, Eiermann G, Tsou NN, Tattersall FD, Rupniak NMJ, Williams AR, Rycroft W, Hargreaves R, MacIntyre DE (1998) Structural optimization affording 2-(R)-(1-(R)-3, 5-bis (trifluoromethyl) phenylethoxy)-3-(S)-(4-fluoro) phenyl-4-(3-oxo-1, 2, 4-triazol-5-yl) methylmorpholine, a potent, orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J Med Chem 41(23):4607–4614. https://doi.org/10.1021/jm980299k

    Article  CAS  PubMed  Google Scholar 

  75. Majumdar AK, Howard L, Goldberg MR, Hickey L, Constanzer M, Rothenberg PL, Crumley TM, Panebianco D, Bradstreet TE, Bergman AJ (2006) Pharmacokinetics of aprepitant after single and multiple oral doses in healthy volunteers. J Clin Pharmacol 46(3):291–300

    Article  CAS  PubMed  Google Scholar 

  76. Rittweger M, Arastéh K (2007) Clinical pharmacokinetics of darunavir. Clin Pharmacokinet 46(9):739–756

    Article  CAS  PubMed  Google Scholar 

  77. Boffito M, Jackson A, Amara A, Back D, Khoo S, Higgs C, Seymour N, Gazzard B, Moyle G (2011) Pharmacokinetics of once-daily darunavir-ritonavir and atazanavir-ritonavir over 72 hours following drug cessation. Antimicrob Agents Chemother 55(9):4218–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abel S, Back DJ, Vourvahis M (2009) Maraviroc: pharmacokinetics and drug interactions. Antivir Ther 14(5):607–618

    Article  CAS  PubMed  Google Scholar 

  79. Davies BE (2010) Pharmacokinetics of oseltamivir: an oral antiviral for the treatment and prophylaxis of influenza in diverse populations. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkq015

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bardsley-Elliot A, Plosker GL (2000) Nelfinavir Drugs 59(3):581–620

    Article  CAS  PubMed  Google Scholar 

  81. Crommentuyn KM, Mulder JW, Mairuhu AT, van Gorp EC, Meenhorst PL, Huitema AD, Beijnen JH (2004) The plasma and intracellular steady-state pharmacokinetics of lopinavir/ritonavir in HIV-1-infected patients. Antivir Ther 9(5):779–785

    Article  CAS  PubMed  Google Scholar 

  82. Khaliq Y, Gallicano K, Venance S, Kravcik S, Cameron DW (2000) Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther 68(6):637–646

    Article  CAS  PubMed  Google Scholar 

  83. Mehandru S, Markowitz M (2003) Tipranavir: a novel non-peptidic protease inhibitor for the treatment of HIV infection. Expert Opin Investig Drugs 12(11):1821–1828

    Article  CAS  PubMed  Google Scholar 

  84. Flores MV, Strawbridge J, Ciaramella G, Corbau R (2009) HCV-NS3 inhibitors: determination of their kinetic parameters and mechanism. Biochim Biophys Acta 1794(10):1441–1448

    Article  CAS  PubMed  Google Scholar 

  85. Yamada I, Suzuki F, Kamiya N, Aoki K, Sakurai Y, Kano M, Matsui H, Kumada H (2012) Safety, pharmacokinetics and resistant variants of telaprevir alone for 12 weeks in hepatitis C virus genotype 1b infection. J Viral Hepat 19(2):e112–e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klibanov OM, Vickery SB, Olin JL, Smith LS, Williams SH (2012) Boceprevir: a novel NS 3/4 protease inhibitor for the treatment of hepatitis C. Pharmacotherapy 32(2):173–190

    Article  CAS  PubMed  Google Scholar 

  87. Cottrell ML, Hadzic T, Kashuba AD (2013) Clinical pharmacokinetic, pharmacodynamic and drug-interaction profile of the integrase inhibitor dolutegravir. Clin Pharmacokinet 52(11):981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brainard DM, Wenning LA, Stone JA, Wagner JA, Iwamoto M (2011) Clinical pharmacology profile of raltegravir, an HIV-1 integrase strand transfer inhibitor. J Clin Pharmacol 51(10):1376–1402

    Article  CAS  PubMed  Google Scholar 

  89. Ramanathan S, Mathias AA, German P, Kearney BP (2011) Clinical pharmacokinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin Pharmacokinet 50(4):229–244

    Article  CAS  PubMed  Google Scholar 

  90. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64(18):6652–6659. https://doi.org/10.1158/0008-5472.Can-04-1168

    Article  CAS  PubMed  Google Scholar 

  91. Spector NL, Robertson FC, Bacus S, Blackwell K, Smith DA, Glenn K, Cartee L, Harris J, Kimbrough CL, Gittelman M (2015) Lapatinib plasma and tumor concentrations and effects on HER receptor phosphorylation in tumor. PLoS ONE 10(11):e0142845

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Schramm VL (2003) Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J Biol Chem 278(34):31465–31468

    Article  CAS  PubMed  Google Scholar 

  93. Major PP, Agarwal RP, Kufe DW (1981) Clinical pharmacology of deoxycoformycin. Blood 58(1):91–96

    Article  CAS  PubMed  Google Scholar 

  94. Kim YB, Kopcho LM, Kirby MS, Hamann LG, Weigelt CA, Metzler WJ, Marcinkeviciene J (2006) Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). Arch Biochem Biophys 445(1):9–18. https://doi.org/10.1016/j.abb.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  95. Boulton DW (2017) Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin Pharmacokinet 56(1):11–24

    Article  CAS  PubMed  Google Scholar 

  96. Wang A, Dorso C, Kopcho L, Locke G, Langish R, Harstad E, Shipkova P, Marcinkeviciene J, Hamann L, Kirby MS (2012) Potency, selectivity and prolonged binding of saxagliptin to DPP4: Maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. BMC Pharmacol 12(1):1–11

    Article  CAS  Google Scholar 

  97. de Leon J, Diaz FJ, Wedlund P, Josiassen RC, Cooper TB, Simpson GM (2004) Haloperidol half-life after chronic dosing. J Clin Psychopharmacol 24(6):656–660

    Article  PubMed  Google Scholar 

  98. Lindström E, Levander S (2006) Sertindole: efficacy and safety in schizophrenia. Expert Opin Pharmacother 7(13):1825–1834

    Article  PubMed  Google Scholar 

  99. Yeung P-F, Hubbard J, Korchinski E, Midha K (1993) Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol 45(6):563–569

    Article  CAS  PubMed  Google Scholar 

  100. Winans E (2003) Aripiprazole. Am J Health Syst Pharm 60(23):2437–2445

    Article  CAS  PubMed  Google Scholar 

  101. Kohout TA, Xie Q, Reijmers S, Finn KJ, Guo Z, Zhu YF, Struthers RS (2007) Trapping of a nonpeptide ligand by the extracellular domains of the gonadotropin-releasing hormone receptor results in insurmountable antagonism. Mol Pharmacol 72(2):238–247. https://doi.org/10.1124/mol.107.035535

    Article  CAS  PubMed  Google Scholar 

  102. Suzuki H, Uemura H, Mizokami A, Hayashi N, Miyoshi Y, Nagamori S, Enomoto Y, Akaza H, Asato T, Kitagawa T (2019) Phase I trial of TAK-385 in hormone treatment-naïve Japanese patients with nonmetastatic prostate cancer. Cancer Med 8(13):5891–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sullivan SK, Hoare SR, Fleck BA, Zhu YF, Heise CE, Struthers RS, Crowe PD (2006) Kinetics of nonpeptide antagonist binding to the human gonadotropin-releasing hormone receptor: implications for structure-activity relationships and insurmountable antagonism. Biochem Pharmacol 72(7):838–849. https://doi.org/10.1016/j.bcp.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  104. Struthers RS, Chen T, Campbell B, Jimenez R, Pan H, Yen SS, Bozigian HP (2006) Suppression of serum luteinizing hormone in postmenopausal women by an orally administered nonpeptide antagonist of the gonadotropin-releasing hormone receptor (NBI-42902). J Clin Endocrinol Metab 91(10):3903–3907

    Article  CAS  PubMed  Google Scholar 

  105. Näbauer M, Erdmann E (1987) Reversal of toxic and non-toxic effects of digoxin by digoxin-specific fab fragments in isolated human ventricular myocardium. Klin Wochenschr 65(12):558–561

    Article  PubMed  Google Scholar 

  106. Noel F, Fagoo M, Godfraind T (1990) A comparison of the affinities of rat (Na++ K+)-ATPase isozymes for cardioactive steroids, role of lactone ring, sugar moiety and KCl concentration. Biochem Pharmacol 40(12):2611–2616

    Article  CAS  PubMed  Google Scholar 

  107. Iisalo E (1977) Clinical pharmacokinetics of digoxin. Clin Pharmacokinet 2(1):1–16

    Article  CAS  PubMed  Google Scholar 

  108. Sykes DA, Bradley ME, Riddy DM, Willard E, Reilly J, Miah A, Bauer C, Watson SJ, Sandham DA, Dubois G (2016) Fevipiprant (QAW039), a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol Pharmacol 89(5):593–605

    Article  CAS  PubMed  Google Scholar 

  109. Erpenbeck VJ, Vets E, Gheyle L, Osuntokun W, Larbig M, Neelakantham S, Sandham D, Dubois G, Elbast W, Goldsmith P (2016) Pharmacokinetics, safety, and tolerability of fevipiprant (QAW039), a novel CRTh2 receptor antagonist: results from 2 randomized, phase 1, placebo-controlled studies in healthy volunteers. Clin Pharmacol Drug Dev 5(4):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Day RO, Graham GG, Hicks M, McLachlan AJ, Stocker SL, Williams KM (2007) Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet 46(8):623–644. https://doi.org/10.2165/00003088-200746080-00001

    Article  CAS  PubMed  Google Scholar 

  111. Lovmar M, Tenson T, Mn E (2004) Kinetics of macrolide action: the josamycin and erythromycin cases. J Biol Chem 279(51):53506–53515

    Article  CAS  PubMed  Google Scholar 

  112. Periti P, Mazzei T, Mini E, Novelli A (1989) Clinical pharmacokinetic properties of the macrolide antibiotics. Clin Pharmacokinet 16(4):193–214. https://doi.org/10.2165/00003088-198916040-00001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a Fellowship for TR from GlaxoSmithKline and by NIH Grant R35-GM131800 for WJJ.

Author information

Authors and Affiliations

Authors

Contributions

Contributed to the study conception and design TR, XZ, WJJ; Conducted literature review: TR, XZ; Performed data analysis: TR, XZ, NMJ, WK; Wrote or contributed to the writing of the manuscript: TR, XZ, WK, WJJ.

Corresponding author

Correspondence to William J. Jusko.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 270 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, T., Zhu, X., Jusko, N.M. et al. Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial. J Pharmacokinet Pharmacodyn 49, 493–510 (2022). https://doi.org/10.1007/s10928-022-09822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09822-y

Keywords

Navigation