Skip to main content

An Extended Model Including Target Turnover, Ligand–Target Complex Kinetics, and Binding Properties to Describe Drug–Receptor Interactions

  • Protocol
  • First Online:
Computational Methods for Estimating the Kinetic Parameters of Biological Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2385))

Abstract

Since the beginning of this century, target-mediated drug disposition has become a central concept in modeling drug action in drug development. It combines a range of processes, such as turnover, protein binding, internalization, and non-specific elimination, and often serves as a nucleus of more complex pharmacokinetic models. It is simple enough to comprehend but complex enough to be able to describe a wide range of phenomena and data sets. However, the complexity comes at a price: many parameters. In this chapter, we present an overview of the temporal development of the compounds involved after different types of drug doses and offer convenient handles for dissecting data sets in a sophisticated manner in order to estimate the values of these parameters, such as rate constants and pertinent concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here F

    L means F approaches L from below and G

    L means G approaches L from above.

  2. 2.

    We write f(x) ∼ A ⋅ g(x) as x → 0 () if: f(x)∕g(x) → A as x → 0 ().

  3. 3.

    time-Averaged Free Target concentration to Initial target concentration Ratio.

References

  1. Levy G (1994) Pharmacologic target mediated drug disposition. Clin Pharmacol Ther 56:248–252

    Article  CAS  Google Scholar 

  2. Sugiyama Y, Hanano M (1989) Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body. Pharm. Res 6(3):192–202

    Article  CAS  Google Scholar 

  3. Mager D, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Phamacodyn 28(6):507–532

    Article  CAS  Google Scholar 

  4. Krzyzanski W, Perez-Ruixo JJ, Vermeulen A (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J. Pharmacokin Biopharm 27:467–489

    Article  CAS  Google Scholar 

  5. Mager D, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596

    Article  CAS  Google Scholar 

  6. Mager, D (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10

    Article  CAS  Google Scholar 

  7. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591

    Article  CAS  Google Scholar 

  8. Krippendorff BF, Kuester K, Kloft C, Huisinga W (2009) Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn 36:239–260

    Article  CAS  Google Scholar 

  9. Peletier LA, Gabrielsson J (2009) Dynamics of target-mediated drug disposition. Eur J Pharm Sci 38:445–464

    Article  CAS  Google Scholar 

  10. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, Abdiche Y, Stone DM, Paralkar VM (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharm Exper Ther 333:2–13

    Article  CAS  Google Scholar 

  11. Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification, J Pharmacokinet Pharmacodyn 39:429–451

    Article  Google Scholar 

  12. Dua P, Hawkins E, Graaf PH van der (2015) A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacometrics Syst Pharmacol 4:324–337. https://doi.org/10.1002/psp4.41

  13. Luu KT, Kraynov E, Kuang B, Vicini P, Zhong W-Z (2013) Modeling, simulation, and translation framework for the preclinical development of monoclonal antibodies. AAPS J 15:551–558

    Article  CAS  Google Scholar 

  14. Stein A, Peletier LA (2018) Predicting the onset of nonlinear pharmacokinetics. CPT Pharmacometrics Syst Pharmacol 7:670–677. https://doi.org/10.1002/psp4.12316

    Article  CAS  Google Scholar 

  15. Gabrielsson J, Peletier LA, Hjorth S (2018) In vivo potency revisited - Keep the target in sight. Pharmacol Ther 184:177–188

    Article  CAS  Google Scholar 

  16. Stein AM, Ramakrishna R (2017) AFIR: a dimensionless potency metric for characterizing the activity of monoclonal antibodies. CPT: Pharmacometrics Syst Pharmacol 6(4):258–266. https://doi.org/10.1002/psp4.12169

    CAS  Google Scholar 

  17. Ahmed S, Ellis M, Li H, Pallucchini L, Stein AM (2019) Guiding dose selection of monoclonal antibodies using a new parameter (AFTIR) for characterizing ligand binding systems. J Pharmacokinet Pharmacodyn 46:287–304

    Article  CAS  Google Scholar 

  18. Derendorf H, Schmidt S (2020) Rowland and Tozer’s clinical pharmacokinetics and pharmacodynamics: concepts and applications, 5th edn. Wolters Kluwer, Philadelphia

    Google Scholar 

  19. Rosenbaum SE (2011) Basic pharmacokinetics and pharmacodynamics. Wiley, Hoboken

    Google Scholar 

  20. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27:397–420

    Article  CAS  Google Scholar 

  21. Yan X, Mager DE, Krzyzanski, W (2010) Selection between Michaelis Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 35:25–47

    Article  Google Scholar 

  22. Ma P (2011) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29:866–882

    Article  Google Scholar 

  23. Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36:199–219. https://doi.org/10.1007/s10928-009-9118-8

    Article  CAS  Google Scholar 

  24. Lin CC, Segel LA (1988) Mathematics applied to deterministic problems in the natural sciences. In: Classics in applied mathematics, vol 1. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  25. Michaelis L, Menten, ML (1913) Die Kinetik der Invertinwirkung. Biochem J 49:333–369

    CAS  Google Scholar 

  26. Briggs GE, Haldane JBS (1913) A note on the kinetics of enzyme action. Biochem J 49:338–339

    Google Scholar 

  27. Brown AJ (1902) Enzyme action. J Chem Soc 81:373–388

    Article  CAS  Google Scholar 

  28. Cornish-Bowden A (2013) The origins of enzyme kinetics. FEBS Lett 587:2725–2730

    Article  CAS  Google Scholar 

  29. Gabrielsson J, Peletier LA (2018) Michaelis-Menten from an in vivo perspective: open versus closed systems. AAPS J 20(6):102. https://doi.org/10.1208/s12248-018-0256-z

    Article  Google Scholar 

  30. Wagner JG (1971) A new generalised nonlinear pharmacokinetic model and its implications. In Wagner JG (ed) Biopharmaceutics and relevant pharmacokinetics. Drug Intelligence Publications, Hamilton, p 302–317

    Google Scholar 

  31. Wagner JG (1973) A modern view of pharmacokinetics. J Pharmacokinet Biopharmaceut 1(5):363–401

    Article  CAS  Google Scholar 

  32. Aston PJ, Derks G, Raji A, Agoram BM, Graaf PH van der (2011) Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency. J Theor Biol 281:113–121

    Google Scholar 

  33. Peletier LA, Gabrielsson J (2018) New equilibrium models of drug-receptor Interactions derived from target-mediated drug disposition. AAPS J 20:69. https://doi.org/10.1208/s12248-018-0221-x

    Article  Google Scholar 

  34. Gibiansky L, Gibiansky E (2010) Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn 37:323–346. https://doi.org/10.1007/s10928-010-9163-3

    Article  CAS  Google Scholar 

  35. Benson N, Graaf PH van der, Peletier LA (2013) Cross-membrane signal transduction of receptor tyrosine kinases (RTKs): from systems biology to systems pharmacology. J Math Biol 66:719–742

    Google Scholar 

  36. Benson N, Graaf PH van der, Peletier LA (2016) Selecting optimal drug-intervention in a pathway involving receptor tyrosine kinases (RTKs). Nonlinear Anal 137:148–170

    Google Scholar 

  37. Gibiansky L, Gibiansky E (2017) Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site. J Pharmacokinet Pharmacodyn 44(5):463–475. https://doi.org/10.1007/s10928-017-9533-1

    Article  CAS  Google Scholar 

  38. Koch G, Jusko WJ, Schropp J (2017) Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations. J Pharmacokinet Phamacodyn 44(1):17–26

    Article  CAS  Google Scholar 

  39. Koch G, Jusko WJ, Schropp J (2017) Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases. J Pharmacokinet Phamacodyn 44(1):27–42

    Article  CAS  Google Scholar 

  40. Cao Y, Jusko WJ (2012) Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 39(6):711–723. https://doi.org/10.1007/s10928-012-9280-2

    Article  CAS  Google Scholar 

  41. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterise the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86

    Article  CAS  Google Scholar 

  42. Li L, Gardner I, Rose R, Jamei M (2014) Incorporating target shedding into a minimal PBPK-TMDD model for monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol3:e96. https://doi.org/10.1038/psp.2013.73

  43. Glassman PM, Balthasar JP (2016) Application of a catenary PBPK model to predict the disposition of “catch and release” anti-PCSK9 antibodies. Int J Pharm 505:69–78

    Article  CAS  Google Scholar 

  44. Yuan D, Rode F, Cao Y (2018) A minimal physiologically based pharmacokinetic model with a nested endosome compartment for novel engineered antibodies. AAPS J 20(3):48. https://doi.org/10.1208/s12248-017-0183-4 Refs. [4547] are not cited in the text. Please provide the citation or delete them from the list.

  45. Cao Y, Jusko WJ (2014) Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41:375–387

    Article  CAS  Google Scholar 

  46. Gabrielsson J, Peletier LA (2017) Pharmacokinetic steady-states highlight interesting target-mediated disposition properties. AAPS J. 19(3):772–786

    Article  CAS  Google Scholar 

  47. Gibiansky L, Gibiansky E (2017) Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site. J Pharmacokinet Phamacodyn 44(5):463–475

    Article  CAS  Google Scholar 

Download references

Acknowledgement

It is a great pleasure to thank Johan Gabrielsson for many stimulating discussions about this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambertus A. Peletier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peletier, L.A. (2022). An Extended Model Including Target Turnover, Ligand–Target Complex Kinetics, and Binding Properties to Describe Drug–Receptor Interactions. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics