Skip to main content
Log in

Monte Carlo simulations in drug release

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

We present methods based on simple sampling Monte Carlo simulations that are used in the study of controlled drug release from devices of various shapes and characteristics. The manuscript is part of a special tribute issue for Prof. Panos Macheras and we have chosen applications of the Monte Carlo method in the field of drug release that were pioneered by him and his research group. Thus, we focus on the investigation of diffusion based release and we present methods that go beyond the application of the classical fickian diffusion equation. We describe methods that have proven to be effective in illuminating the profound effects of the substrate heterogeneity on the drug release profiles and demonstrate some of the most powerful applications of agent based simulations and numerical methods in the field of pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perrie Y, Rades T (2012) FASTtrack Pharm. Pharmaceutical press, London

    Google Scholar 

  2. Macheras P, Iliadis A (2016) Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics. Springer, New York. https://doi.org/10.1007/978-3-319-27598-7

    Book  Google Scholar 

  3. Bäckman P, Arora S, Couet W, Forbes B, de Kruijf W, Paudel A (2018) Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci 113:41–52

    Article  CAS  PubMed  Google Scholar 

  4. Kaoui B, Lauricella M, Pontrelli G (2018) Mechanistic modelling of drug release from multi-layer capsules. Comput Biol Med 93:149–157

    Article  CAS  PubMed  Google Scholar 

  5. Kosmidis K, Macheras P (2018) On the dilemma of fractal or fractional kinetics in drug release studies: a comparison between weibull and mittag-leffler functions. Int J Pharm 543(1–2):269–273

    Article  CAS  PubMed  Google Scholar 

  6. Kosmidis K, Karalis V, Argyrakis P, Macheras P (2004) Michaelis-menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics. Biophys J 87(3):1498–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marsh RE, Tuszyski JA (2006) Fractal michaelis-menten kinetics under steady state conditions: application to mibefradil. Pharm Res 23(12):2760–2767. https://doi.org/10.1007/s11095-006-9090-6

    Article  CAS  PubMed  Google Scholar 

  8. Nygren H (1993) Nonlinear kinetics of ferritin adsorption. Biophys J 65(4):1508–1512. https://doi.org/10.1016/S0006-3495(93)81221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ritger PL, Peppas NA (1987) A simple equation for description of solute release ii. Fickian and anomalous release from swellable devices. J Controll Release 5(1):37–42

    Article  CAS  Google Scholar 

  10. Savageau MA (1995) Michaelis-menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 176(1):115–124. https://doi.org/10.1006/jtbi.1995.0181

    Article  CAS  PubMed  Google Scholar 

  11. Savageau MA (1998) Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 47(1–2):9–36

    Article  CAS  PubMed  Google Scholar 

  12. Siepmann J, Peppas N (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Adv Drug Deliv Rev 48(2–3):139–157

    Article  CAS  PubMed  Google Scholar 

  13. Zhan W, Alamer M, Xu XY (2018) Computational modelling of drug delivery to solid tumour: understanding the interplay between chemotherapeutics and biological system for optimised delivery system. Adv Drug Deliv Rev 132:81–103

    Article  CAS  PubMed  Google Scholar 

  14. Landau DP, Binder K (2014) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Reichl LE (2016) A modern course in statistical physics. Wiley, Hoboken

    Book  Google Scholar 

  16. Newman M, Barkema G (1999) Monte Carlo methods in statistical physics. Oxford University Press, New York

    Google Scholar 

  17. Weiss G (2005) Aspects and applications of the random walk (random materials & processes S.). North-Holland

  18. Hughes BD (1995) Random walks and random environments. Clarendon Press; Oxford University Press, Oxford

    Google Scholar 

  19. Feller W (2008) An introduction to probability theory and its applications, vol 1. Wiley, Hoboken

    Google Scholar 

  20. Fishman G (2013) Monte Carlo: concepts, algorithms, and applications. Springer, New York

    Google Scholar 

  21. Kroese DP, Taimre T, Botev ZI (2013) Handbook of monte carlo methods, vol 706. Wiley, Hoboken

    Google Scholar 

  22. Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, New York

    Google Scholar 

  23. Kalos M, Whitlock P (2008) Monte Carlo methods, 2nd edn. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  24. Kosmidis K, Argyrakis P, Macheras P (2003b) A reappraisal of drug release laws using monte carlo simulations: the prevalence of the weibull function. Pharm Res 20(7):988–995

    Article  CAS  PubMed  Google Scholar 

  25. Bunde A, Havlin S (2012) Fractals and disordered systems. Springer Science & Business Media, New York

    Google Scholar 

  26. Berg BA (2004) Markov chain Monte Carlo simulations and their statistical analysis: with web-based Fortran code. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  27. Bunde A, Havlin S, Nossal R, Stanley H, Weiss G (1985) On controlled diffusion-limited drug release from a leaky matrix. J Chem Phys 83(11):5909–5913

    Article  CAS  Google Scholar 

  28. Kosmidis K, Argyrakis P, Macheras P (2003a) Fractal kinetics in drug release from finite fractal matrices. J Chem Phys 119:6373

    Article  CAS  Google Scholar 

  29. Villalobos R, Vidales AM, Cordero S, Quintanar D, Domínguez A (2006) Monte carlo simulation of diffusion-limited drug release from finite fractal matrices. J Sol-Gel Sci Technol 37(3):195–199

    Article  CAS  Google Scholar 

  30. Villalobos R, Garcia E V, Quintanar D, Young P M (2017) Drug release from inert spherical matrix systems using Monte Carlo simulations. Curr Drug Deliv 14(1):65–72

    Article  CAS  PubMed  Google Scholar 

  31. Bunde A, Havlin S (2013) Fractals in science. Springer, New York

    Google Scholar 

  32. Landau RH, Páez MJ, Bordeianu CC (2015) Computational physics: problem solving with Python. Wiley, Hoboken

    Google Scholar 

  33. Havlin S, Ben-Avraham D (2002) Diffusion in disordered media. Adv Phys 51(1):187–292

    Article  CAS  Google Scholar 

  34. Dokoumetzidis A, Macheras P (2009) Fractional kinetics in drug absorption and disposition processes. J Pharmacokinet Pharmacodyn 36(2):165–178. https://doi.org/10.1007/s10928-009-9116-x

    Article  CAS  PubMed  Google Scholar 

  35. Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55(11):48–54

    Article  CAS  Google Scholar 

  36. Kosmidis K, Macheras P (2007a) Monte carlo simulations for the study of drug release from matrices with high and low diffusivity areas. Int J Pharm 343(1–2):166–172

    Article  CAS  PubMed  Google Scholar 

  37. Kosmidis K, Macheras P (2007b) Monte carlo simulations of drug release from matrices with periodic layers of high and low diffusivity. Int J Pharm 354:111

    Article  CAS  PubMed  Google Scholar 

  38. Crank J et al (1979) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  39. Morse PM, Feshbach H (1953) Methods of theoretical physics. Mc Graw-Hill Book, New York

    Google Scholar 

  40. Jou D, Casas-Vázquez J, Lebon G (1996) Extended irreversible thermodynamics. Springer, New York

    Book  Google Scholar 

  41. Nettleton R, Sobolev SL (1995) Applications of extended thermodynamics to chemical rheological, and transport processes: a special survey part i. Approaches and scalar rate processes. J Non Equilib Thermodyn 20(3):205–229

    CAS  Google Scholar 

  42. Sobolev S (1994) Equations of transfer in non-local media. Int J Heat Mass Transfer 37(14):2175–2182

    Article  CAS  Google Scholar 

  43. Sobolev S (2012) Local non-equilibrium diffusion model for solute trapping during rapid solidification. Acta Mater 60(6–7):2711–2718

    Article  CAS  Google Scholar 

  44. Sobolev SL (1991) Transport processes and traveling waves in systems with local nonequilibrium. Sov Phys Uspekhi 34(3):217

    Article  Google Scholar 

  45. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P (2006) On the use of the weibull function for the discernment of drug release mechanisms. Int J Pharm 309(1–2):44–50

    Article  CAS  PubMed  Google Scholar 

  46. Pereira LM (2010) Fractal pharmacokinetics. Comput Math Methods Med 11(2):161–184

    Article  PubMed  Google Scholar 

  47. Fuite J, Marsh R, Tuszyński J (2002) Fractal pharmacokinetics of the drug mibefradil in the liver. Phys Rev E 66(2):021904

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosmas Kosmidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Invited manuscript for the Special Tribute Issue for Panos Macheras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmidis, K., Dassios, G. Monte Carlo simulations in drug release. J Pharmacokinet Pharmacodyn 46, 165–172 (2019). https://doi.org/10.1007/s10928-019-09625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-019-09625-8

Keywords

Navigation