Skip to main content
Log in

Incorporation of stochastic variability in mechanistic population pharmacokinetic models: handling the physiological constraints using normal transformations

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The utilisation of physiologically-based pharmacokinetic models for the analysis of population data is an approach with progressively increasing impact. However, as we move from empirical to complex mechanistic model structures, incorporation of stochastic variability in model parameters can be challenging due to the physiological constraints that may arise. Here, we investigated the most common types of constraints faced in mechanistic pharmacokinetic modelling and explored techniques for handling them during a population data analysis. An efficient way to impose stochastic variability on the parameters of interest without neglecting the underlying physiological constraints is through the assumption that they follow a distribution with support and properties matching the underlying physiology. It was found that two distributions that arise through transformations of the normal, the logit-normal generalisation and the logistic-normal, are excellent for such an application as not only they can satisfy the physiological constraints but also offer high flexibility during characterisation of the parameters’ distribution. The statistical properties and practical advantages/disadvantages of these distributions for such an application were clearly displayed in the context of different modelling examples. Finally, a simulation study clearly illustrated the practical gains of the utilisation of the described techniques, as omission of population variability in physiological systems parameters leads to a biased/misplaced stochastic model with mechanistically incorrect variance structure. The current methodological work aims to facilitate the use of mechanistic/physiologically-based models for the analysis of population pharmacokinetic clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tsamandouras N, Rostami-Hodjegan A, Aarons L (2015) Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79(1):48–55

    Article  CAS  PubMed  Google Scholar 

  2. Tsamandouras N, Dickinson G, Guo Y, Hall S, Rostami-Hodjegan A, Galetin A, Aarons L (2015) Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach. Pharm Res 32(6):1864–1883. doi:10.1007/s11095-014-1581-2

    Article  CAS  PubMed  Google Scholar 

  3. Aitchison J, Shen SM (1980) Logistic-normal distributions: some properties and uses. Biometrika 67(2):261–272

    Article  Google Scholar 

  4. Lavielle M (2014) Mixed effects models for the population approach. Models, tasks, methods & tools. Chapman & Hall/CRC Biostatistics Series, Boca Raton

    Google Scholar 

  5. van der Walt JS, Hong Y, Zhang L, Pfister M, Boulton DW, Karlsson MO (2013) A nonlinear mixed effects pharmacokinetic model for dapagliflozin and dapagliflozin 3-o-glucuronide in renal or hepatic impairment. CPT: Pharmacomet Syst Pharmacol 2:e42

    Google Scholar 

  6. Gueorguieva I, Aarons L, Rowland M (2006) Diazepam pharamacokinetics from preclinical to Phase I using a Bayesian population physiologically based pharmacokinetic model with informative prior distributions in Winbugs. J Pharmacokinet Pharmacodyn 33(5):571–594

    Article  CAS  PubMed  Google Scholar 

  7. Langdon G, Gueorguieva I, Aarons L, Karlsson M (2007) Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM. Eur J Clin Pharmacol 63(5):485–498

    Article  CAS  PubMed  Google Scholar 

  8. Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis, 1st edn. Chapman & Hall, London

    Google Scholar 

  9. Coleman T, Li Y (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optimiz 6(2):418–445

    Article  Google Scholar 

  10. Aitchison J (1982) The statistical analysis of compositional data. J Roy Stat Soc B Met 44(2):139–177

    Google Scholar 

  11. Blei DM, Lafferty JD (2007) A correlated topic model of science. Ann Appl Stat 1(1):17–35

    Article  Google Scholar 

  12. Minka T (2000) Estimating a Dirichlet distribution. Technical report. http://researchmicrosoftcom/en-us/um/people/minka/papers/dirichlet/minka-dirichletpdf

  13. Read NW, Al-Janabi MN, Holgate AM, Barber DC, Edwards CA (1986) Simultaneous measurement of gastric emptying, small bowel residence and colonic filling of a solid meal by the use of the gamma camera. Gut 27(3):300–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Read NW, Cammack J, Edwards C, Holgate AM, Cann PA, Brown C (1982) Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut 23(10):824–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang X, Lionberger RA, Davit BM, Yu LX (2011) Utility of physiologically based absorption modeling in implementing quality by design in drug development. AAPS J 13(1):59–71

    Article  PubMed Central  PubMed  Google Scholar 

  16. Peters SA (2008) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47(4):261–275

    Article  CAS  PubMed  Google Scholar 

  17. Lartigue S, Bizais Y, Bruley des Varannes S, Murat A, Pouliquen B, Galmiche JP (1994) Inter- and intrasubject variability of solid and liquid gastric emptying parameters. Dig Dis Sci 39(1):109–115

    Article  CAS  PubMed  Google Scholar 

  18. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, Tucker G (2009) Population-based mechanistic prediction of oral drug absorption. AAPS J 11(2):225–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yu LX, Crison JR, Amidon GL (1996) Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm 140(1):111–118

    Article  CAS  Google Scholar 

  20. Gertz M, Tsamandouras N, Säll C, Houston JB, Galetin A (2014) Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk. Pharm Res 31(9):2367–2382

    Article  CAS  PubMed  Google Scholar 

  21. Kawai R, Mathew D, Tanaka C, Rowland M (1998) Physiologically based pharmacokinetics of Cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther 287(2):457–468

    CAS  PubMed  Google Scholar 

  22. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, Tedder DR (2003) Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol 33(5):469–503

    Article  PubMed  Google Scholar 

  23. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp® population-based ADME simulator. Expert Opin Drug Metab Toxicol 5(2):211–223

    Article  CAS  PubMed  Google Scholar 

  24. Wendling T, Ogungbenro K, Pigeolet E, Dumitras S, Woessner R, Aarons L (2014) Model-based evaluation of the impact of furmulation and food intake on the complex oral absorption of mavoglurant in healthy subjects. Pharm Res 32(5):1764–1778. doi:10.1007/s11095-014-1574-1

    Article  PubMed  Google Scholar 

  25. Zhou H (2003) Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol 43(3):211–227

    Article  CAS  PubMed  Google Scholar 

  26. Csajka C, Drover D, Verotta D (2005) The use of a sum of inverse Gaussian functions to describe the absorption profile of drugs exhibiting complex absorption. Pharm Res 22(8):1227–1235

    Article  CAS  PubMed  Google Scholar 

  27. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51(1):45–73

    Article  CAS  PubMed  Google Scholar 

  28. Nestorov I (2003) Whole body pharmacokinetic models. Clin Pharmacokinet 42(10):883–908

    Article  CAS  PubMed  Google Scholar 

  29. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484

    Article  CAS  PubMed  Google Scholar 

  30. Hoff PD (2003) Nonparametric modeling of hierarchically exchangeable data. University of Washington Statistics Department, Technical Report 421

  31. Huang J, Malisiewicz T (2009) Fitting a hierarchical logistic normal distribution. Technical Report, Carnegie Mellon University

  32. DiCiccio T, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11(3):189–228

    Article  Google Scholar 

  33. Klotz U, Antonin KH, Bieck PR (1976) Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther 199(1):67–73

    CAS  PubMed  Google Scholar 

  34. Greenblatt DJ, Allen MD, Harmatz JS, Shader RI (1980) Diazepam disposition determinants. Clin Pharmacol Ther 27(3):301–312

    Article  CAS  PubMed  Google Scholar 

  35. Rowland M, Leitch D, Fleming G, Smith B (1984) Protein binding and hepatic clearance: discrimination between models of hepatic clearance with diazepam, a drug of high intrinsic clearance, in the isolated perfused rat liver preparation. J Pharmacokinet Biopharm 12(2):129–147

    Article  CAS  PubMed  Google Scholar 

  36. Sorger PK, Allerheiligen SR, Abernethy DR, et al. (2011) Quantitative and systems pharmacology in the post-genomic era: New approaches to discovering drugs and understanding therapeutic mechanisms. An NIH white paper by the QSP workshop group: 1-48

  37. Jusko WJ (2013) Moving from basic toward systems pharmacodynamic models. J Pharm Sci 102(9):2930–2940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wulkersdorfer B, Wanek T, Bauer M, Zeitlinger M, Muller M, Langer O (2014) Using positron emission tomography to study transporter-mediated drug-drug interactions in tissues. Clin Pharmacol Ther 96(2):206–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Plan EL, Elshoff JP, Stockis A, Sargentini-Maier ML, Karlsson MO (2012) Likert pain score modeling: a Markov integer model and an autoregressive continuous model. Clin Pharmacol Ther 91(5):820–828

    Article  CAS  PubMed  Google Scholar 

  40. Petersson KF, Hanze E, Savic R, Karlsson M (2009) Semiparametric distributions with estimated shape parameters. Pharm Res 26(9):2174–2185

    Article  CAS  PubMed  Google Scholar 

  41. Krewski D, Wang Y, Bartlett S, Krishnan K (1995) Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models. J Biopharm Stat 5(3):245–271

    CAS  PubMed  Google Scholar 

  42. Farrar D, Allen B, Crump K, Shipp A (1989) Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainty in output. Toxicol Lett 49(2–3):371–385

    Article  CAS  PubMed  Google Scholar 

  43. Gelman A, Bois F, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 91(436):1400–1412

    Article  Google Scholar 

  44. Bois FY (2000) Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 108(Suppl 2):307–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Yang Y, Xu X, Georgopoulos PG (2010) A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol 20(4):326–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lindberg-Freijs A, Karlsson MO (1994) Dose dependent absorption and linear disposition of cyclosporin a in rat. Biopharm Drug Dispos 15(1):75–86

    Article  CAS  PubMed  Google Scholar 

  47. Silber HE, Frey N, Karlsson MO (2010) An integrated glucose-insulin model to describe oral glucose tolerance test data in healthy volunteers. J Clin Pharmacol 50(3):246–256

    Article  CAS  PubMed  Google Scholar 

  48. Bizzotto R, Zamuner S, Mezzalana E, De Nicolao G, Gomeni R, Hooker AC, Karlsson MO (2011) Multinomial logistic functions in Markov chain models of sleep architecture: internal and external validation and covariate analysis. AAPS J 13(3):445–463

    Article  PubMed Central  PubMed  Google Scholar 

  49. Gelman A (1995) Method of moments using Monte Carlo simulation. J Comput Graph Stat 4(1):36–54

    Google Scholar 

  50. Willmann S, Hohn K, Edginton A, Sevestre M, Solodenko J, Weiss W, Lippert J, Schmitt W (2007) Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 34(3):401–431

    Article  PubMed  Google Scholar 

  51. McNally K, Cotton R, Hogg A, Loizou G (2014) Popgen: a virtual human population generator. Toxicology 315:70–85

    Article  CAS  PubMed  Google Scholar 

  52. Krauß M, Tappe K, Burghaus R, Schuppert A, Kuepfer L, Goerlitz L (2014) Hierarchical Bayesian-PBPK modeling for physiological characterization and extrapolation of patient populations from clinical data. PAGE 23 (2014), Abstr 3151. www.page-meeting.org/?abstract=3151

Download references

Acknowledgments

N.T. was the recipient of a PhD grant jointly awarded by the University of Manchester and Eli Lilly and Company. A.R-H. is an employee of the University of Manchester and parttime secondee to Simcyp Limited (a Certara Company). The authors would like to acknowledge the discussions and fruitful comments made by Dr Alison Margolskee and by the members of the Centre for Applied Pharmacokinetic Research at the University of Manchester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Tsamandouras.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsamandouras, N., Wendling, T., Rostami-Hodjegan, A. et al. Incorporation of stochastic variability in mechanistic population pharmacokinetic models: handling the physiological constraints using normal transformations. J Pharmacokinet Pharmacodyn 42, 349–373 (2015). https://doi.org/10.1007/s10928-015-9418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9418-0

Keywords

Navigation