Skip to main content
Log in

Effect of Ex Situ Modification of Bacterial Cellulose with Organosilane Coupling Agent on Drug Delivery Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a polymer structurally like plant cellulose, but with superior physicochemical properties. BC and the several functionalization possibilities exhibited by cellulosic polymers have led to new versatile multifunctional materials. Several studies have investigated modifications to the BC surface to make it effective, for example, in antibacterial and adsorption terms, so, BC was functionalized with the silanes 3-Aminopropyltriethoxysilane and 3-glycidyloxypropyltrimethoxysilane in three different proportions. Although the diffractograms of the modified samples did not exhibit significant changes, this indicates FTIR spectra, with primary amino groups and stretching the vibration of Si–O–Si. Regarding drug adsorption kinetics, the samples exhibited a better fit with the pseudo-second-order model the increase in pH value promoted an increase in the maximum amount of adsorption, with values of q = 98.92 mg g−1 for Ibuprofen and q = 98.50 mg g−1 for Ketoprofen. In the in vitro release tests using gastric fluid, the release rate achieved higher values compared to PBS environments. The highest release values were observed with the samples modified by method 2 and particularly, the BC70-A sample showed the highest percentage of drug release. Controlled release can provide a smoother and prolonged release profile, resulting in a more stable response to the medication. Silanized BC showed greater inhibition for Staphylococcus aureus.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bondancia TJ, Florencio C, Baccarin GS, Farinas CS (2022) Cellulose nanostructures obtained using enzymatic cocktails with different compositions. Int J Biol Macromol 207:299–307. https://doi.org/10.1016/j.ijbiomac.2022.03.007

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Wang Y, Feng C et al (2020) Novel quat/di-N-halamines silane unit with enhanced synergism polymerized on cellulose for development of superior biocidability. Int J Biol Macromol 154:173–181. https://doi.org/10.1016/j.ijbiomac.2020.03.117

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira FJL, Silva LS, da Silva MS et al (2019) Understanding kinetics and thermodynamics of the interactions between amitriptyline or eosin yellow and aminosilane-modified cellulose. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115246

    Article  PubMed  Google Scholar 

  4. Meneguin AB, Ferreira Cury BS, dos Santos AM et al (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023. https://doi.org/10.1016/j.carbpol.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  5. Torres FG, Arroyo JJ, Troncoso OP (2019) Bacterial cellulose nanocomposites: An all-nano type of material. Mater Sci Eng, C 98:1277–1293

    Article  CAS  Google Scholar 

  6. Domeneguetti RR, Sakai VY, Perotti GF et al (2023) Structural and morphological properties of in-situ biosynthesis of biocompatible bacterial cellulose/Laponite nanocomposites. Appl Clay Sci 234:106851. https://doi.org/10.1016/j.clay.2023.106851

    Article  CAS  Google Scholar 

  7. Xie Y, Niu X, Yang J et al (2020) Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol 150:480–491. https://doi.org/10.1016/j.ijbiomac.2020.01.291

    Article  CAS  PubMed  Google Scholar 

  8. de Lima FM, Meneguin AB, Tercjak A et al (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134. https://doi.org/10.1016/j.carbpol.2017.09.061

    Article  CAS  Google Scholar 

  9. de Oliveira Barud HG, da Silva RR, da Silva BH et al (2016) A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 153:406–420

    Article  PubMed  Google Scholar 

  10. Khan S, Ul-islam M, Wajid M et al (2022) International journal of biological macromolecules fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: a review. Int J Biol Macromol 209:9–30. https://doi.org/10.1016/j.ijbiomac.2022.03.191

    Article  CAS  PubMed  Google Scholar 

  11. Barbosa De Sousa R, Gomes Vieira E, Meneguin AB et al (2018) Recent advances in methods of synthesis and applications of bacterial cellulose/calcium phosphates com-posites in bone tissue engineering. IJAMB. https://doi.org/10.25061/2595-3931/IJAMB/2018.v1i2.16

    Article  Google Scholar 

  12. Lima LR, Santos DB, Santos M et al (2015) Nanocristais de celulose a partir de celulose bacteriana. Quim Nova 38:1140–1147. https://doi.org/10.5935/0100-4042.20150131

    Article  CAS  Google Scholar 

  13. Lima LR, Conte GV, Brandão LR et al (2022) Fabrication of noncytotoxic functional siloxane-coated bacterial cellulose nanocrystals. ACS Appl Polym Mater 4:2306–2313. https://doi.org/10.1021/acsapm.1c01437

    Article  CAS  Google Scholar 

  14. Li Z, Zhao S, Wang H et al (2019) Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery. Colloids Surf B Biointerfaces 178:1–7. https://doi.org/10.1016/j.colsurfb.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  15. Ćirić A, Medarević Đ, Čalija B et al (2021) Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. Int J Biol Macromol 167:547–558. https://doi.org/10.1016/j.ijbiomac.2020.11.201

    Article  CAS  PubMed  Google Scholar 

  16. Borba PB, Meneguin AB, Silva JM et al (2022) Bacterial nanocellulose containing diethylditiocarbamate bio-curatives: physicochemical characterization and drug delivery evaluation. Cellulose 29:1557–1565. https://doi.org/10.1007/s10570-021-04360-1

    Article  CAS  Google Scholar 

  17. Mendes FS, Cruz CEM, Martins RN et al (2023) On the diffusion of ketoprofen and ibuprofen in water: an experimental and theoretical approach. J Chem Thermodyn. https://doi.org/10.1016/j.jct.2022.106955

    Article  Google Scholar 

  18. Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng, C 82:372–383

    Article  CAS  Google Scholar 

  19. Santos MV, Maturi FE, Pecoraro É et al (2021) Cellulose based photonic materials displaying direction modulated photoluminescence. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.617328

    Article  PubMed  PubMed Central  Google Scholar 

  20. Silva LS, Carvalho J, de Sousa Bezerra RD et al (2018) Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules. https://doi.org/10.3390/molecules23040743

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ferreira FV, Otoni CG, De France KJ et al (2020) Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Mater Today 37:126–141. https://doi.org/10.1016/j.mattod.2020.03.003

    Article  CAS  Google Scholar 

  22. Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76:183–191. https://doi.org/10.1205/095758298529326

    Article  CAS  Google Scholar 

  23. Wnętrzak A, Chachaj-Brekiesz A, Kuś K et al (2022) Oxysterols can act antiviral through modification of lipid membrane properties – The Langmuir monolayer study. J Steroid Biochem Mole Biol. https://doi.org/10.1016/j.jsbmb.2022.106092

    Article  Google Scholar 

  24. Irving Lanowix B Adsorption of gases on glass, mica and platinum. The adsorption of gases on plane surfaces of glass, mica and platinum

  25. Of S, Hift H, Ouellet L et al (1953) Synthesis of Cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. The Johns Hopkins Press, Baltimore

    Google Scholar 

  26. Schwabe K, Voigt C (1969) Über den einfluβ von Cl– und Br–ionen auf die kinetik der korrosion von Fe in sauren lösungen. Electrochim Acta 14:853–869. https://doi.org/10.1016/0013-4686(69)87007-6

    Article  CAS  Google Scholar 

  27. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  28. Chen SQ, Cao X, Li Z et al (2020) Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116632

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen T, He X, Jiang T et al (2021) Synthesis and drug delivery properties of Ibuprofen-Cellulose nanofibril system. Int J Biol Macromol 182:931–937. https://doi.org/10.1016/j.ijbiomac.2021.04.096

    Article  CAS  PubMed  Google Scholar 

  30. (2015) M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Twelfth Edition

  31. Komal GK, Nidhi, et al (2022) Amelioration of adsorptive efficacy by synergistic assemblage of functionalized graphene oxide with esterified cellulose nanofibers for mitigation of pharmaceutical waste. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127541

    Article  PubMed  Google Scholar 

  32. Silva LS, Lima LCB, Ferreira FJL et al (2015) Sorption of the anionic reactive red RB dye in cellulose: assessment of kinetic, thermodynamic, and equilibrium data. Open Chem 13:801–812. https://doi.org/10.1515/chem-2015-0079

    Article  Google Scholar 

  33. Vitória de Andrade Silva K, Ferreira N, Durães Chlusewicz V, et al (2017) Celulose Bacteriana Produzida a Partir de Glicerol Residual da Produção de Biodiesel. In: Anais do Simpósio de Bioquímica e Biotecnologia. Galoa

  34. Zhang Y, Yin M, Lin X et al (2019) Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications. Chem Eng J 371:306–313. https://doi.org/10.1016/j.cej.2019.04.075

    Article  CAS  Google Scholar 

  35. Khanjanzadeh H, Behrooz R, Bahramifar N et al (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136

    Article  CAS  PubMed  Google Scholar 

  36. Dórame-Miranda RF, Gámez-Meza N, Medina-Juárez L et al (2019) Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr Polym 207:91–99. https://doi.org/10.1016/j.carbpol.2018.11.067

    Article  CAS  PubMed  Google Scholar 

  37. Mohite B, v., Patil S v. (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141. https://doi.org/10.1016/j.carbpol.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  38. Diaz-Ramirez J, Urbina L, Eceiza A et al (2021) Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int J Biol Macromol 191:1212–1220. https://doi.org/10.1016/j.ijbiomac.2021.09.203

    Article  CAS  PubMed  Google Scholar 

  39. Bezerra RDS, Silva MMF, Morais AIS et al (2014) Natural cellulose for ranitidine drug removal from aqueous solutions. J Environ Chem Eng 2:605–611. https://doi.org/10.1016/j.jece.2013.10.016

    Article  CAS  Google Scholar 

  40. Yu B, Cheng H, Zhuang W et al (2019) Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process Biochem 79:40–48. https://doi.org/10.1016/j.procbio.2018.12.024

    Article  CAS  Google Scholar 

  41. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  42. Fernandes SCM, Sadocco P, Alonso-Varona A et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. https://doi.org/10.1021/am400338n

    Article  CAS  PubMed  Google Scholar 

  43. Schramm C (2020) High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material. Spectrochim Acta A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2020.118815

    Article  PubMed  Google Scholar 

  44. da Silva Filho EC, de Melo JCP, Airoldi C (2006) Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohydr Res 341:2842–2850. https://doi.org/10.1016/j.carres.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  45. Shao W, Wu J, Liu H et al (2017) Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr Polym 178:270–276. https://doi.org/10.1016/j.carbpol.2017.09.045

    Article  CAS  PubMed  Google Scholar 

  46. Feng X, Ullah N, Wang X et al (2015) Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917. J Food Sci 80:E2217–E2227. https://doi.org/10.1111/1750-3841.13010

    Article  CAS  PubMed  Google Scholar 

  47. Vieira AP, Santana SAA, Bezerra CWB et al (2009) Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J Hazard Mater 166:1272–1278. https://doi.org/10.1016/j.jhazmat.2008.12.043

    Article  CAS  PubMed  Google Scholar 

  48. Bezerra RDS, Leal RC, da Silva MS et al (2017) Direct modification of microcrystalline cellulose with ethylenediamine for use as adsorbent for removal amitriptyline drug from environment. Molecules. https://doi.org/10.3390/molecules22112039

    Article  PubMed  PubMed Central  Google Scholar 

  49. Silva LS, Ferreira FJL, Silva MS et al (2018) Potential of amino-functionalized cellulose as an alternative sorbent intended to remove anionic dyes from aqueous solutions. Int J Biol Macromol 116:1282–1295. https://doi.org/10.1016/j.ijbiomac.2018.05.034

    Article  CAS  PubMed  Google Scholar 

  50. Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037

    Article  CAS  Google Scholar 

  51. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH et al (2020) Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 158:670–688

    Article  CAS  PubMed  Google Scholar 

  52. Wang YJ, Lin PY, Hsieh SL et al (2021) Utilizing edible agar as a carrier for dual functional doxorubicin-fe3o4 nanotherapy drugs. Materials. https://doi.org/10.3390/ma14081824

    Article  PubMed  PubMed Central  Google Scholar 

  53. Al-Musawi S, Albukhaty S, Al-Karagoly H et al (2020) Dextran-coated superparamagnetic nanoparticles modified with folate for targeted drug delivery of camptothecin. Adv Nat Sci: Nanosci Nanotechnol. https://doi.org/10.1088/2043-6254/abc75b

    Article  Google Scholar 

  54. Huang CH, Chuang TJ, Ke CJ, Yao CH (2020) Doxorubicin-gelatin/Fe3O4-Alginate dual-layer magnetic nanoparticles as targeted anticancer drug delivery vehicles. Polymers (Basel). https://doi.org/10.3390/POLYM12081747

    Article  PubMed  PubMed Central  Google Scholar 

  55. Albadran HA, Monteagudo-Mera A, Khutoryanskiy VV, Charalampopoulos D (2020) Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Appl Microbiol Biotechnol 104:5749–5757. https://doi.org/10.1007/s00253-020-10632-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Agostinho DAS, Paninho AI, Cordeiro T et al (2020) Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123290

    Article  Google Scholar 

  57. Huang S, Liu H, Huang S et al (2020) Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116650

    Article  PubMed  Google Scholar 

  58. Gehrcke M, de Bastos BT, da Rosa LS et al (2021) Incorporation of nanocapsules into gellan gum films: a strategy to improve the stability and prolong the cutaneous release of silibinin. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.111624

    Article  Google Scholar 

  59. Ribeiro AJ, De Souza FRL, Bezerra JMNA et al (2016) Gums’ based delivery systems: review on cashew gum and its derivatives. Carbohydr Polym 147:188–200

    Article  CAS  PubMed  Google Scholar 

  60. Zhou M, Li S, Shi S et al (2020) Hepatic targeting of glycyrrhetinic acid via nanomicelles based on stearic acid-modified fenugreek gum. Artif Cells Nanomed Biotechnol 48:1105–1113. https://doi.org/10.1080/21691401.2020.1813740

    Article  CAS  PubMed  Google Scholar 

  61. Zhou M, Hu Q, Wang T et al (2016) Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery. Carbohydr Polym 153:336–344. https://doi.org/10.1016/j.carbpol.2016.07.105

    Article  CAS  PubMed  Google Scholar 

  62. Banerjee R, Kumar KJ, Kennedy JF (2023) Structure and drug delivery relationship of acidic polysaccharides: a review. Int J Biol Macromol 243:125092

    Article  CAS  PubMed  Google Scholar 

  63. Chandra NS, Gorantla S, Priya S, Singhvi G (2022) Insight on updates in polysaccharides for ocular drug delivery. Carbohydr Polym 297:120014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding. The authors thank CNPq (Grant. 309614/2021-0; INCT-INFO and INCT), Capes, São Paulo Research Foundation (FAPESP) (Grants No. 2013/07276-1), Piaui Research Foundation (FAPEPI).

Author information

Authors and Affiliations

Authors

Contributions

Ariane Maria da Silva Santos Nascimento: Conceptualization, Methodology, Writing—original draft. Jhonatan Miguel Silva: Methodology, Investigation. Idglan Sá de Lima: Methodology, Investigation. Josy Anteveli Osajima Furtini: Methodology, Investigation, Supervision, Formal analysis, Writing—review & editing. Hernane da Silva Barud: Methodology, Investigation, Validation, Supervision, Writing—review & editing. Sidney José Lima Ribeiro: Investigation, Supervision, Writing—review & editing. Edson Cavalcanti Silva-Filho: Methodology, Investigation, Supervision, Validation, Formal analysis, Writing—review & editing. Edvani Curti Muniz: Investigation, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Edson Cavalcanti Silva-Filho.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7607 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, A.M.S.S., Silva, J.M., de Lima, I.S. et al. Effect of Ex Situ Modification of Bacterial Cellulose with Organosilane Coupling Agent on Drug Delivery Properties. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03235-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03235-3

Keywords

Navigation