Skip to main content

Advertisement

Log in

Radiolytically Depolymerized Low Molecular-Weight Chitosan (ICH) and Sodium Alginate (ISA) Improve Growth Attributes, Physiological Performance and the Production of Steviol Glycosides (SGs) of S. rebaudiana (Bertoni)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The leaves of Stevia rebaudiana (Bertoni) are the source of several medicinally important bioactive compounds, including steviol glycosides (SGs), primarily accountable for the sweetness of the plant, and phenolic compounds, which offer a wide variety of therapeutic potential against various diseases. Two separate pot experiments were conducted simultaneously in order to investigate the influence of foliar-spray treatments at different concentrations (40, 80, 120, and 160 mg L−1) of irradiated chitosan (ICH) and irradiated sodium alginate (ISA) on the performance of S. rebaudiana with regard to its growth, physiological activities, and production of steviol glycosides measured at 90 days after planting. The growth and physiological attributes of Stevia were significantly improved as a result of foliar sprays of ICH and ISA. Of the treatments, 80 mg L−1 of ICH and 120 mg L−1 of ISA performed the best and resulted in the highest values of all studied parameters compared to the water-spray control. On area-percentage basis, the respective treatments of ICH and ISA also led to an increase in the leaf contents of steviol glycosides, viz., Stevioside by 57.14% and 51.13% and (Rebaudioside A) by 43.28% and 36.64% respectively, as well as other bioactive compounds of S. rebaudiana leaf such as D-Allose sugar (by 33.17% and 29.98%), Neophytadiene (by 57.40% and 53.21%), and β-amyrin (by 16.31% and 13.81%), respectively, compared to the control treatment. Findings of the present study demonstrated that foliar-sprays of γ-irradiated chitosan and sodium alginate improved growth as well as physiological performance of S. rebaudiana, triggering the production of important steviol glycosides and other bioactive constituents of Stevia through up-regulating the secondary metabolism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abd El-Mohdy HL (2017) Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arab J Chem 10:431–438. https://doi.org/10.1016/j.arabjc.2012.10.003

    Article  CAS  Google Scholar 

  2. Abd El-Rehim HA, El-Sawy NM, Farag IA, Elbarbary AM (2011) Synergistic effect of combining ionizing radiation and oxidizing agents on controlling degradation of Na-alginate for enhancing growth performance and increasing productivity of Zea mays plants. Carbohydr Polym 86:1439–1444. https://doi.org/10.1016/j.carbpol.2011.05.066

    Article  CAS  Google Scholar 

  3. Aftab T, Khan MMA, Idrees M, Naeem M, Uddin M, Hashmi N, Varshney L (2011) Enhancing the growth, photosynthetic capacity and arteamisinin content in Artemisia annua L. by irradiated sodium alginate. Radiat Phys Chem 80:833–836. https://doi.org/10.1016/j.rad.phys.chem.2011.03.004

    Article  CAS  Google Scholar 

  4. Aftab T, Naeem M, Idrees M, Khan MMA, Varshney L (2013) Cumulative role of irradiated sodium alginate and nitrogen fertilizer on growth, biochemical processes and artemisinin production in Artemisia annua. Ind Crops Prod 50:874–881. https://doi.org/10.1016/j.indcrop.2013.08.026

    Article  CAS  Google Scholar 

  5. Aftab T, Naeem M, Idrees M, Khan MMA, Uddin M, Varshney L (2016) Simultaneous use of irradiated sodium alginate and nitrogen and phosphorus fertilizers enhance growth, biomass and artemisinin biosynthesis in Artemisia annua L. J Appl Res Med Aromat Plants 3:186–194. https://doi.org/10.1016/j.jarmap.2016.05.001

    Article  Google Scholar 

  6. Ahmad B, Khan MMA, Jahan J, Shabbir A, Jaleel H (2020) Increased production of valuable secondary products in plants by leaf applied radiation-processed polysaccharides. Int J Biol Macromol 164:286–294. https://doi.org/10.1016/j.ijbiomac.2020.07.121

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad B, Khan MMA, Jaleel H, Sadiq Y, Shabbir A, Uddin M (2017) Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes, and yield in Mentha piperita L. Turk J Biol 41:388–401. https://doi.org/10.3906/biy-1608-64

    Article  CAS  Google Scholar 

  8. Ahmed KBM, Khan MMA, Jahan A, Siddiqui H, Uddin M (2020) Gamma rays induced acquisition of structural modification in chitosan boosts photosynthetic machinery, enzymatic activities and essential oil production in citronella grass (Cymbopogon winterianus Jowitt). Int J Biol Macromol (The Netherlands) 145:372–389. https://doi.org/10.1016/j.ijbiomac.2019.12.130

    Article  CAS  Google Scholar 

  9. Ahmed KBM, Khan MMA, Siddiqui H, Jahan A (2020) Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydr Polym 227. https://doi.org/10.1016/j.carbpol.2019.115331

    Article  PubMed  Google Scholar 

  10. F Ahsan S Bashir F Shah 2020 Nutritional and medicinal properties of Stevia rebaurdiana Curr Res Diabetes Obes 13 555867 https://doi.org/10.19080/CRDOj.2020.13.555867

    Article  Google Scholar 

  11. Akimoto C, Aoyagi H, Tanaka H (1999) Endogenous elicitor-like effect of alginate on physiological activities of plant cells. Appl Microbiol Biotechnol 52:429–436. https://doi.org/10.1007/s002530051542

    Article  CAS  Google Scholar 

  12. Ali A, Khan MMA, Uddin M, Naeem M, Idrees M, Hashmi N, Dar TA, Varshney L (2014) Radiolytically depolymerized sodium alginate improves physiological activities, yield attributes and composition of essential oil of Eucalyptus citriodora Hook. Carbohydr Polym 112:134–144. https://doi.org/10.1016/j.carbpol.2014.05.070

    Article  CAS  PubMed  Google Scholar 

  13. Avella M, Di Pace E, Immirzi B, Impallomeni G, Malinconico M, Santagata G (2007) Addition of glycerol plasticizer to seaweeds derived alginates: influence of microstructure on chemical physical properties. Carbohydr Polym 69:503–511. https://doi.org/10.1016/j.carbpol.2007.01.011

    Article  CAS  Google Scholar 

  14. Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392. https://doi.org/10.1146/annurev.pp.45.060194.002101

    Article  CAS  Google Scholar 

  15. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759

    Article  CAS  PubMed  Google Scholar 

  16. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. https://doi.org/10.1093/jxb/erh196

    Article  CAS  PubMed  Google Scholar 

  17. Bayraktar M, Naziri E, Akgun IH, Karabey F, Ilhan E, Akyol B, Gurel A (2016) Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell Tissue Org Cult 127:289–300. https://doi.org/10.1007/s11240-016-1049-7

    Article  CAS  Google Scholar 

  18. Bayraktar M, Naziri E, Karabey F, Akgun IH, Bedir E, Bärbel RO, Gürel A (2018) Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. Int J Second Metab 5:362–374. https://doi.org/10.21448/ijsm.496724

    Article  Google Scholar 

  19. Bender C (2016) Stevia rebaudiana’s antioxidant properties. In: Merillon JM, Ramawat K (eds) Sweeteners. Reference series in phytochemistry. Springer, Cham, pp 1–27

    Google Scholar 

  20. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8

    Article  CAS  Google Scholar 

  21. Castro DFP, Bernardo NJLC, Matias FBR (2021) Stevia rebaudiana leaf extract reduces blood glucose and visceral fat accumulation in alloxan-induced diabetic mice. J Microbiol Biotech Food Sci 10:3347. https://doi.org/10.15414/jmbfs.3347

    Article  CAS  Google Scholar 

  22. Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 121:41–54. https://doi.org/10.1016/j.pharmthera.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Chmielewski AG, Haji-Saeid M (2004) Radiation technologies: Past, present and future. Radiat Phys Chem 71:17–21. https://doi.org/10.1016/j.radphyschem.2004.05.040

    Article  CAS  Google Scholar 

  24. Craigie JS, Morris ER, Rees DA, Thom D (1984) Alginate block structure in Phaeophyceae from Nova Scotia: variation with species, environment and tissue- type. Carbohydr Polym 4:237–252. https://doi.org/10.1016/0144-8617(84)90001-8

    Article  CAS  Google Scholar 

  25. Dalvi S, Wani K, Ithape DM, Penna S (2021) Potential of biopriming with irradiated chitosan for sugarcane micropropagation. In: Naeem M, Aftab T, Khan MMA (eds) Radiation-processed polysaccharides: emerging role in agriculture. Academic Press, New York, pp 179–204

    Google Scholar 

  26. Dar TA, Moin U, Khan MMA, Ali A, Rasool SM, Varshney L (2015) Effect of Co-60 gamma irradiated chitosan and phosphorus fertilizer on growth, yield and trigonelline content of Trigonella foenum-graecum L. J Radiat Res Appl Sci 8:446–458. https://doi.org/10.1016/j.jrras.2015.03.008

    Article  Google Scholar 

  27. Dar TA, Uddin M, Khan MMA, Ali A, Varshney L (2016) Modulation of alkaloid content, growth and productivity of Trigonella foenum-graecum L. using irradiated sodium alginate in combination with soil applied phosphorus. J Appl Res Med Aromat Plants 3:200–210. https://doi.org/10.1016/j.jarmap.2016.05.003

    Article  Google Scholar 

  28. Darvill A, Auger C, Bergmann C, Carlson RW, Cheong JJ, Eberhard S et al (1992) Oligosaccharins-oligosaccharides that regulate growth, development and defense response in plants. Glycobiology 2:181–198. https://doi.org/10.1093/glycob/2.3.181

    Article  CAS  PubMed  Google Scholar 

  29. Dwivedi RS, Randhawa NS (1974) Evaluation of rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451. https://doi.org/10.1007/BF00011531

    Article  CAS  Google Scholar 

  30. Elateeq AA, Saad ZH, Eissa MA, Ullah S (2021) Effect of chitosan and light conditions on the production of callus biomass, total flavonoids and total phenolics in Ginkgo biloba L. Al-Azhar J Agric Res 46:28–42. https://doi.org/10.21608/ajar.2021.218197

    Article  Google Scholar 

  31. El-Sawy NM, Abd El-Rehim HA, Elbarbary AM, Hegazy E-SA (2010) Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr Polym 79:555–562. https://doi.org/10.1016/j.carbpol.2009.09.002

    Article  CAS  Google Scholar 

  32. El-Sawy NM, Abd El-Rehim HA, Hegazy ESA, Elbarbary AM (2013) Preparation of low molecular weight natural polymers by γ-radiation and their growth promoting effect on Zea mays plants. Chem Mater Res 3:66–78

    Google Scholar 

  33. El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 245:215–224. https://doi.org/10.1007/s10725-005-4928-1

    Article  CAS  Google Scholar 

  34. Faqir YH, Ma JH, Chai YL (2021) Chitosan in modern agriculture production. Plant Soil Environ 67:679–699. https://doi.org/10.17221/332/2021-PSE

    Article  CAS  Google Scholar 

  35. Fawzy MA, Gomaa M, Hifney AF, Abdel-Gawad KM (2017) Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr Polym 157:1903–1912. https://doi.org/10.1016/j.carbpol.2016.11.077

    Article  CAS  PubMed  Google Scholar 

  36. Fazili MA, Wani AH, Bhat ZA (2017) Effect of oligomeric sodium alginate and chitosan on growth attributes, physiology and essential oil composition in Mentha arvensis L. in Northern Himalayas. J Funct Environ Botany 7(2):101. https://doi.org/10.5958/2231-1750.2017.00012.9

  37. Fiske CH, Subba Row Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400. https://doi.org/10.1016/s0021-9258(18)84756-1

    Article  CAS  Google Scholar 

  38. Gerami M, Majidian P, Ghorbanpour A, Alipour Z (2020) Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol Mol Biol Plants 26:965–974. https://doi.org/10.1007/s12298-020-00788-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Golkar P, Moradi M, Garousi GA (2019) Elicitation of Stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech 21:569–577. https://doi.org/10.1007/s12355-018-0655-6

    Article  CAS  Google Scholar 

  40. Guan YG, Hu WZ, Jiang AL, Xu YP, Sa RGW, Feng K et al (2019) Effect of methyl jasmonate on phenolic accumulation in wounded broccoli. Molecules 24:3537. https://doi.org/10.3390/molecules24193537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hai L, Diep TB, Nagasawa N, Yoshii F, Kume T (2003) Radiation depolymerization of chitosan to prepare oligomers. Nucl Instrum Methods Phys Res, Sect B 208:466–470. https://doi.org/10.1016/S0168-583X(03)01181-9

    Article  CAS  Google Scholar 

  42. Hald PM (1946) The flame photometer for the measurement of sodium and potassium in biological materials. J biol Chem 163:499–510 (PMID: 20285045)

    Google Scholar 

  43. Halder M, Sarkar S, Jha S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19:880–895. https://doi.org/10.1002/elsc.201900058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hecht H, Srebnik S (2016) Structural characterization of sodium alginate and calcium alginate. Biomacromol 17:2160–2167. https://doi.org/10.1021/acs.biomac.6b00378

    Article  CAS  Google Scholar 

  45. Hendawey MH, Abo El Fadl RE (2014) Biochemical studies on the production of active constituents in Stevia rebaudiana L. callus. Glob J Biotechnol Biochem 9:76–93. https://doi.org/10.5829/idosi.gjbb.2014.9.3.1112

    Article  Google Scholar 

  46. Hien NQ, Nagasawa N, Tham LX, Yoshii F, Dang VH, Mitomo H et al (2000) Growth promotion of plants with depolymerized alginates by irradiation. Radiat Phys Chem 59:97–101. https://doi.org/10.1016/S0969-806X(99)00522-8

    Article  CAS  Google Scholar 

  47. Hu X, Jiang X, Hwang H, Liu S, Guan H (2004) Promotive effects of alginate-derived oligosaccharide on maize seed germination. J Appl Phycol 16:73–76. https://doi.org/10.1023/B:JAPH.0000019139.35046.0c

    Article  CAS  Google Scholar 

  48. Idrees M, Dar TA, Naeem M, Aftab T, Khan MMA, Ali A, Uddin M, Varshney L (2015) Effects of gamma-irradiated sodium alginate on lemongrass: field trials monitoring production of essential oil. Ind Crops Prod 63:269–275. https://doi.org/10.1016/j.indcrop.2014.09.037

    Article  CAS  Google Scholar 

  49. Idrees M, Naeem M, Alam M, Aftab T, Hashmi N, Khan MMA, Varshney L (2011) Utilizing the γ-irradiated sodium alginate as a plant growth promoter for enhancing the growth, physiological activities, and alkaloids production in Catharanthus roseus L. Agr Sci China 10:1213–1221. https://doi.org/10.1016/S1671-2927(11)60112-0

    Article  CAS  Google Scholar 

  50. Idrees M, Nasir S, Naeem M, Aftab T, Khan MMA, Varshney L (2012) Gamma irradiated sodium alginate induced modulation of phosphoenolpyruvate carboxylase and production of essential oil and citral content of lemongrass. Ind Crops Prod 40:62–68. https://doi.org/10.1016/j.indcrop.2012.02.024

    Article  CAS  Google Scholar 

  51. Islam S, Bhuiyan MAR (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866. https://doi.org/10.1007/s10924-016-0865-5

    Article  CAS  Google Scholar 

  52. Iwasaki K, Matsubara Y (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem 64:1067–1070. https://doi.org/10.1271/bbb.64.1067

    Article  CAS  PubMed  Google Scholar 

  53. Jaleel H, Khan MMA, Ahmad B, Shabbir A, Sadiq Y, Uddin M, Varshney L (2017) Essential oil and citral production in field-grown lemongrass in response to gamma-irradiated chitosan. J Herbs Spices Med Plants 23:378–392. https://doi.org/10.1080/10496475.2017.1349702

    Article  CAS  Google Scholar 

  54. Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1247–1279. https://doi.org/10.1016/s0006-291x(71)80010-4

    Article  Google Scholar 

  55. Kamble PK, Lohate SR, Hasabnis SN, Dalvi SG (2021) Effect of GI chitosan on biochemical parameters of pea leaves infected by Erysiphe pisi. IJCS 9:216–219

    CAS  Google Scholar 

  56. Kandoudi W, Radácsi P, Gosztola B, Zámborine Németh E (2021) Elicitation of medicinal plants in vivo—is it a realistic tool? The effect of methyl jasmonate and salicylic acid on lamiaceae species. Horticulturae 8:5. https://doi.org/10.3390/horticulturae8010005

    Article  Google Scholar 

  57. Kazmi A, Khan MA, Mohammad S, Ali A, Kamil A, Arif M, Ali H (2019) Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind Crops Prod 139:111530. https://doi.org/10.1016/j.indcrop.2019.111530

    Article  CAS  Google Scholar 

  58. Khan ZH, Khan MMA, Aftab T, Idrees M, Naeem M (2011) Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agric China 5:122–127. https://doi.org/10.1007/s11703-010-1056-0

    Article  Google Scholar 

  59. Khan MMA, Faraz A, Sadiq Y, Khanam N, Ahmed KBM, Naeem M, Aftab T (2021) Fractions of gamma-irradiated sodium alginate enhances the growth, enzymatic activities, and essential oil production of lemongrass [Cymbopogon flexuosus (Steud.)Wats]. In: Naeem M, Aftab T, Khan MMA (eds) Radiation-processed polysaccharides: emerging role in agriculture. Academic Press, New York, pp 257–272

    Google Scholar 

  60. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375. https://doi.org/10.3390/molecules18022328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim HJ, Chen F, Wang X, Rajapakse NC (2005) Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 53:3696–3701. https://doi.org/10.1021/jf0480804

    Article  CAS  PubMed  Google Scholar 

  62. Kim S, Baek SK, Song KB (2018) Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packag Shelf Life 18:157–163. https://doi.org/10.1016/j.fpsl.2018.11.008

    Article  Google Scholar 

  63. Kumar ABV, Varadaraj MC, Gowda LR, Tharanathan RN (2007) Low molecular weight chitosans—preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim Biophys Acta 1770:495–505. https://doi.org/10.1016/j.bbagen.2006.12.003

    Article  CAS  Google Scholar 

  64. Kume T, Nagasawa N, Yoshii F (2002) Utilization of carbohydrates by radiation processing. Radiat Phys Chem 63:625–627

  65. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. https://doi.org/10.1104/pp.010320

  66. Latridis N, Kougioumtzi A, Vlataki K, Papadaki S, Magklara A (2022) Anti-cancer properties of Stevia rebaudiana more than a sweetener. Molecules 27:1362. https://doi.org/10.3390/molecules27041362.PMID:35209150;PMCID:PMC8874712

    Article  Google Scholar 

  67. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–vis spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York

    Google Scholar 

  68. Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76–89. https://doi.org/10.1104/pp.19.1.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luan LQ, Ha TTV, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2005) Biological effect of irradiated chitosan on plants in vitro. Biotechnol Appl Biochem 41:49–57. https://doi.org/10.1042/BA20030219

    Article  CAS  PubMed  Google Scholar 

  70. Luan LQ, Ha VTT, Nagasawa N, Nakanishi TM (2009) A study of degradation mechanism of alginate by gamma-irradiation. Radioisotopes 58:1–11. https://doi.org/10.3769/radioisotopes.58.1

    Article  CAS  Google Scholar 

  71. Luan LQ, Hien NQ, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2003) Biological effect of radiation-degraded alginate on flower plants in tissue culture. Biotechnol Appl Biochem 38:283–288. https://doi.org/10.1042/BA20030058

    Article  CAS  Google Scholar 

  72. Lucho SR et al (2018) Elicitor-induced transcriptional changes of genes of the steviol glycoside biosynthesis pathway in Stevia rebaudiana (Bertoni). J Plant Growth Regul 37:971–985. https://doi.org/10.1007/s00344-018-9795-x

    Article  CAS  Google Scholar 

  73. Ma LJ, Li XM, Bu N, Li N (2010) An alginate-derived oligosaccharide enhanced wheat tolerance to cadmium stress. Plant Growth Regul 62:71–76. https://doi.org/10.1007/s10725-010-9489-2

    Article  CAS  Google Scholar 

  74. Mackie W (1971) Semi-quantitative estimation of the composition of alginates by infra-red spectroscopy. Carbohydr Res 20:413–415. https://doi.org/10.1016/s0008-6215(00)81397-x

    Article  CAS  PubMed  Google Scholar 

  75. Marinova D, Ribarova F, Atanassova M (2005) Total phenolic and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 403:255–260

    Google Scholar 

  76. Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A (2021) Rare sugars: recent advances and their potential role in sustainable crop protection. Molecules 26:1720. https://doi.org/10.3390/molecules26061720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miladinova-Georgieva K, Geneva M, Stancheva I, Petrova M, Sichanova M, Kirova E (2023) Effects of different elicitors on micropropagation, biomass and secondary metabolite production of Stevia rebaudiana Bertoni—a review. Plants 12:153. https://doi.org/10.3390/plants12010153

    Article  CAS  Google Scholar 

  78. Moussa HR, Taha MA, Dessoky ES et al (2023) Exploring the perspectives of irradiated sodium alginate on molecular and physiological parameters of heavy metal stressed Vigna radiata L. plants. Physiol Mol Biol Plants 29:447–458. https://doi.org/10.1007/s12298-023-01286-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mukarram M, Khan MMA, Uddin M, Corpas FJ (2022) Irradiated chitosan (ICH): an alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiol Plant 44:2. https://doi.org/10.1007/s11738-021-03335-w

    Article  CAS  Google Scholar 

  80. Muley AB, Shingote PR, Patil AP, Dalvi SG, Suprasanna P (2019) Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydr Polym 210:289–301. https://doi.org/10.1016/j.carbpol.2019.01.056

    Article  CAS  PubMed  Google Scholar 

  81. Nabi A, Mukarram M, Aftab T, Khan MMA, Naeem M (2022) Acquisition of physiological modulations in medicinal plants through degraded natural polysaccharides under dynamic environment. Emerging plant growth regulators in agriculture. Academic Press, New York, pp 399–414

    Chapter  Google Scholar 

  82. Nacional U, Mar D, Simontacchi M (2017) Interactions between hormone and redox signaling pathways in the control of growth and cross-tolerance to stress. Environ Exp Bot 94:73–88. https://doi.org/10.1016/j.envexpbot.2012.05.003

    Article  CAS  Google Scholar 

  83. Naeem M, Aftab T, Khan MMA (2021) Radiation-processed polysaccharides: emerging roles in agriculture. Academic Press, New York

    Google Scholar 

  84. Naeem M, Aftab T, Ansari AA, Idrees M, Ali A, Khan MMA, Varshney L (2015) Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L. J Radiat Res Appl Sci 8:606–616. https://doi.org/10.1016/j.jrras.2015.07.005

    Article  Google Scholar 

  85. Naeem M, Idrees M, Aftab T, Alam M, Khan MMA, Moinuddin VL (2014) Employing depolymerized sodium alginate, triacontanol and 28-homobrassinolide in enhancing physiological activities, production of essential oil and active components in Mentha arvensis L. Ind Crops Prod 55:272–279. https://doi.org/10.1016/j.indcrop.2014.01.052

    Article  CAS  Google Scholar 

  86. Naeem M, Idrees M, Aftab T, Khan MMA, Uddin M, Varshney L (2012) Irradiated sodium alginate improves plant growth, physiological activities, and active constituents in Mentha arvensis L. J Appl Pharm Sci 2:28–35. https://doi.org/10.7324/JAPS.2012.2529

    Article  CAS  Google Scholar 

  87. Naeem M, Idrees M, Aftab T, Khan MMA, Moinuddin AS, Varshney L (2012) Depolymerized carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr Polym 87:1211–1218. https://doi.org/10.1016/j.carbpol.2011.09.002

    Article  CAS  Google Scholar 

  88. Naik PM, Al Khayri JM (2016) Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotechnol 1:1–7. https://doi.org/10.15226/2475-4714/1/2/00102

    Article  Google Scholar 

  89. Natsume M, Kamao Y, Hirayama M, Adachi T (1994) Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities. Carbohydr Res 258:187–197. https://doi.org/10.1016/0008-6215(94)84085-7

    Article  CAS  PubMed  Google Scholar 

  90. Nedbal L, Soukupova J, Whitmarsh J, Trtilek M (2000) Post-harvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica 38:571–579. https://doi.org/10.1023/A:1012413524395

    Article  CAS  Google Scholar 

  91. Niculescu AG, Grumezescu AM (2022) Applications of chitosan-alginate-based nanoparticles-an up-to-date review. Nanomaterials (Basel) 12:186. https://doi.org/10.3390/nano12020186

    Article  CAS  PubMed  Google Scholar 

  92. Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G (2017) Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Compr Rev Food Sci 16:1243–1268. https://doi.org/10.1111/1541-4337.12298

    Article  CAS  Google Scholar 

  93. Park JE, Cha YS (2010) Stevia rebaurdiana Bertoni extract supplementation improves lipid and carnitine profiles in C57BL/6J mice fed a high-fat diet. J Sci Food Agric 90:1099–1105. https://doi.org/10.1002/jsfa.3906

    Article  CAS  PubMed  Google Scholar 

  94. Pratyusha S (2022) Phenolic compounds in the plant development and defense: an overview. Intech Open. https://doi.org/10.5772/intechopen.102873

    Article  Google Scholar 

  95. Rasheed F, Naeem M, Uddin M, Khan MMA (2017) Synergistic effect of irradiated sodium alginate and methyl jasmonate on anticancer alkaloids production in periwinkle (Catharanthus roseus L.). J Funct Environ Bot 7:77. https://doi.org/10.5958/2231-1750.2017.00010.5

    Article  Google Scholar 

  96. Rasouli D, Werbrouck S, Maleki B, Jafary H, Schurdi-Levraud V (2021) Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. South Afr J Bot 137:265–271. https://doi.org/10.1016/j.sajb.2020.10.023

    Article  CAS  Google Scholar 

  97. Reis Giada ML (2013) Food phenolic compounds: main classes, sources and their antioxidant power. In: Morales-Gonzalez JA (ed) Oxidative stress and chronic degenerative diseases—a role for antioxidants. IntechOpen, London, pp 87–112

    Google Scholar 

  98. Sadiq Y, Khan MMA, Shabbir A, Ahmad B, Jaleel H, Uddin M, Varshney L (2017) Structural re-arrangement of depolymerized sodium alginate enriches peltate glandular trichomes and essential oil production of spearmint. Int J Biol Macromol 105:1043–1050. https://doi.org/10.1016/j.ijbiomac.2017.07.134

    Article  CAS  PubMed  Google Scholar 

  99. Safikhan S, Khoshbakht K, Chaichi MR, Amini A, Motesharezadeh B (2018) Chitosan Nano-particles application on growth, physiology and mineral element contents of Milk thistle (Silybum marianum) under salinity stress condition. Iran J Field Crops Res. https://doi.org/10.22067/gsc.v16i2.67288

  100. Salachna P, Grzeszczuk M, Meller E, Soból M (2018) Oligo-alginate with low molecular mass improves growth and physiological activity of Eucomis autumnalis under salinity stress. Molecules 23:812. https://doi.org/10.3390/molecules23040812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salachna P, Pietrak A (2021) Evaluation of carrageenan, xanthan gum and depolymerized chitosan based coatings for pineapple lily plant production. Horticulturae 7:19. https://doi.org/10.3390/horticulturae7020019

    Article  Google Scholar 

  102. Samdurkar AN, Choudhary AD, Varshney L et al (2021) Foliar spray of gamma ray degraded chitosan enhances the yield in wheat. Plant Physiol Rep 26:561–569. https://doi.org/10.1007/s40502-021-00606-z

    Article  CAS  Google Scholar 

  103. Sarfaraz A, Naeem M, Nasir S, Idrees M, Aftab T, Hashmi N, Khan MMA, , Moinuddin, Varshney L (2011) An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). J Med Plant Res 5:15–21. https://doi.org/10.5897/JMPR.9000071

    Article  CAS  Google Scholar 

  104. Sellimi S, Younes I, Ayed HB, Maalej H, Montero V, Rinaudo M, Nasri M (2015) Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed. Int J Biol Macromol 72:1358–1367. https://doi.org/10.1016/j.ijbiomac.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  105. Shabbir A, Khan MMA, Ahmad B, Sadiq Y, Khanam N, Naeem M, Aftab T (2022) Improvement in growth, physiological attributes and essential oil production of Vetiveria zizanioides (L.) Nash mediated by soil-applied gamma-irradiated sodium alginate. In: Naeem M, Aftab T, Khan MMA (eds) Radiation-processed polysaccharides: emerging role in agriculture. Academic Press, London

    Google Scholar 

  106. Shabbir A, Khan MMA, Sadiq Y, Jaleel H, Ahmad B, Uddin M (2017) Regulation of functional activities and essential oil production in Vetiveria zizanioides L. Nash after Î3-irradiated sodium alginate elicitation. Turk J Biol 41:661–672. https://doi.org/10.3906/biy-1704-6

    Article  CAS  Google Scholar 

  107. Shangguan Z, Shao M, Dyckmans J (2000) Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol 156:46–51. https://doi.org/10.1016/S0176-1617(00)80271-0

    Article  CAS  Google Scholar 

  108. Sharma S, Gupta S, Kumari D, Kothari SL, Jain R, Kachhwaha S (2023) Exploring plant tissue culture and steviol glycosides production in Stevia rebaudiana (Bert.) Bertoni: a review. Agriculture 13:475. https://doi.org/10.3390/agriculture13020475

    Article  CAS  Google Scholar 

  109. Shen K, Hu Q, Wang Z, Qu J (2011) Effect of 60Co irradiation on the properties of chitosan rod. Mater Sci Eng C 31:866–872. https://doi.org/10.1016/j.msec.2011.02.002

    Article  CAS  Google Scholar 

  110. Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, Capita R, Alonso-Calleja C, Pereira JE, Amaral JS, Igrejas G, Poeta P (2020) Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidant 9:178. https://doi.org/10.3390/antiox9020178

    Article  CAS  Google Scholar 

  111. Silvia T, Luciana A (2013) Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric 93:2121–2129. https://doi.org/10.1002/jsfa.6016

    Article  CAS  Google Scholar 

  112. Sinha S, Astani A, Ghosh T, Schnitzler P, Ray B (2010) Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71(23–5242):10. https://doi.org/10.1016/j.phytochem.2009.10.014

    Article  CAS  Google Scholar 

  113. Stankovic MS (2011) Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J Sci 33:63–72

    Google Scholar 

  114. Sytar O, Borankulova A, Shevchenko Y, Wendt A, Smentanskal I (2015) Antioxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci 53:221–224. https://doi.org/10.15414/jmbfs.2015/16.5.3.221-224

  115. Tahmasi S, Garoosi G, Ahmadi J, Farjaminezhad R (2017) Effect of salicylic acid on stevioside and rebaudioside A production and transcription of biosynthetic genes in in vitro culture of Stevia rebaudiana. Iran J Genet Plant Breed 6:1–8. https://doi.org/10.30479/IJGPB.2017.1486

  116. Taiz L, Zeiger E, Moller IM, Murphy A (2014) Plant Physiology, 6th edn. Sinauer Associates Inc., Sunderland, MA, USA

    Google Scholar 

  117. Tehranian AS, Askari H, Rezadoost H (2022) The effect of alginate as an elicitor on transcription of steviol glycosides biosynthesis pathway related key genes and sweeteners content in in vitro cultured Stevia rebaudiana. Mol Biol Rep 50:2283–2291. https://doi.org/10.1007/s11033-022-07906-z

    Article  CAS  PubMed  Google Scholar 

  118. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 5:93. https://doi.org/10.3390/medicines5030093

    Article  CAS  PubMed  Google Scholar 

  119. Twaij BM, Hasan MN (2022) Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol 13:4–14. https://doi.org/10.3390/ijpb13010003

    Article  CAS  Google Scholar 

  120. Uddin M, Ahmad DT, Khan MMA, Rasheed F (2018) enhancing the production of anticancer leaf-alkaloids of Catharanthus roseus (L.) G. Don, using methyl jasmonate and irradiated sodium alginate in pot experiments. J Adv Plant Sci 1:212

    Google Scholar 

  121. Vuolo MM, Lima VS, Maróstica-Junior MR (2018) Phenolic compounds: structure, classification, and antioxidant power. In: Segura-Campos MR (ed) Bioactive compounds: health benefits and potential applications. Elsevier, Amsterdam

    Google Scholar 

  122. Wang B, Wanc Y, Zheng Y, Leea X, Liua T, Yud Z, Huange J, Okg YS, Chenh J, Gaob B (2018) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49:318–356. https://doi.org/10.1080/10643389.2018.1547621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wenwei Z, Xiaoguang Z, Li Y, Yuefang Z, Jiazhen S (1993) Some chemical changes in chitosan induced by γ-ray irradiation. Polym Degrad Stab 41:83–84

    Article  Google Scholar 

  124. Yang J, Shen Z, Sun Z et al (2021) growth stimulation activity of alginate-derived oligosaccharides with different molecular weights and mannuronate/guluronate ratio on Hordeum vulgare L. J Plant Growth Regul 40:91–100. https://doi.org/10.1007/s00344-020-10078-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is highly thankful to University Grants Commission (UGC), New Delhi (India), for providing financial assistance to the first author. We also grateful to the Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra (India) for their assistance in providing and gamma-irradiation of the chitosan and sodium alginate for the present study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS: Methodology, Investigation, Formal analysis, Visualization, Writing – original draft. MU: Supervision, Methodology, Formal analysis, Writing – review & editing. SS: Formal analysis, Visualization. KBMA: Conceptualization, Resources, Methodology, Formal analysis. UHB: Formal analysis, Visualization. ASC: Formal analysis, Visualization. MMAK: Supervision, Conceptualization, Resources, Methodology, Formal analysis. AC: Formal analysis, Visualization. All authors have read and agreed to the published present version of the manuscript.

Corresponding author

Correspondence to Sangram Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Uddin, M., Singh, S. et al. Radiolytically Depolymerized Low Molecular-Weight Chitosan (ICH) and Sodium Alginate (ISA) Improve Growth Attributes, Physiological Performance and the Production of Steviol Glycosides (SGs) of S. rebaudiana (Bertoni). J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03149-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03149-6

Keywords

Navigation