Skip to main content
Log in

Superior Performance of Titanium Coated Magnetic Mesoporous Silica Nanocomposite Based Poly(lactic acid) Membranes for the Separation of Chlorophenolic Organic Contaminants

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly (lactic acid) (PLA) based biopolymeric membranes are biodegradable and are prone to fouling. In the current study, titanium-coated mesoporous silica (TiO2-MMS) nanocomposites have been incorporated with PLA membranes to enhance the flux performance and separation of chlorophenolic compounds. PLA membranes with TiO2-MMS nanocomposites were prepared using the phase inversion method. The structural, functional and crystalline morphology of the tailored membrane was determined by scanning electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The addition of 1.5 wt% of TiO2-MMS nanoparticles to bare PLA polymer enhanced the porosity to 37.93%, water content to 46.86% and contact angle to 59.21°. The designed PLA/TiO2-MMS nanocomposite membrane with a molecular weight cut-off of 9 kDa exhibits a pure water flux of 251.67 Lm−2 h−1. The higher concentration of TiO2-MMS nanocomposite to 1.5 wt% enhances the rejection to 49.5% and 56.8% for pentachlorophenol (PCP) and 2,6 dichlorophenol (DCP), respectively and improved the permeation flux of PCP to 111.08 Lm−2 h−1and DCP to 129.74 Lm−2 h−1. Interestingly, the PLA/TiO2-MMS (1.5 wt%) membrane resulted in a significant increase in flux recovery ratio of 54% for PCP and 58% for DCP, confirming the membrane’s antifouling property. At the same time, irreversible fouling of PCP and DCP of the PLA/TiO2-MMS (1.5 wt%) membrane decreased drastically to 20.5 and 19.11%, respectively. Therefore, biodegradable PLA membrane modified with TiO2-MMS nanocomposite designates its potential application in wastewater treatment plants for the treatment of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available upon reasonable request.

Abbreviations

PLA:

Poly(lactic acid)

TiO2-MMS:

Titanium coated magnetic mesoporous silica

PEG:

Poly ethylene glycol

MWCO:

Molecular weight cutoff

PCP:

Pentachlorophenol

DCP:

Dichlorophenol

NMP:

N-methyl-2-pyrrolidone

Rir :

Irreversible fouling

Rr :

Reversible fouling

FDR:

Flux decline rate

FRR:

Flux recovery ratio

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared spectroscopy

References

  1. Singh AK, Bilal M, Jesionowski T, Iqbal HMN (2023) Assessing chemical hazard and unraveling binding affinity of priority pollutants to lignin modifying enzymes for environmental remediation. Chemosphere 313:137546. https://doi.org/10.1016/J.CHEMOSPHERE.2022.137546

    Article  CAS  PubMed  Google Scholar 

  2. Ling Y, Hu S, Chen T et al (2020) Effect of dose rate on degradation of 2,6-dichlorophenol by electron beam irradiation. J Radioanal Nucl Chem 323:975–982. https://doi.org/10.1007/s10967-019-07004-8

    Article  CAS  Google Scholar 

  3. Garba ZN, Zhou W, Lawan I et al (2019) An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J Environ Manage 241:59–75. https://doi.org/10.1016/J.JENVMAN.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Eslami A, Hashemi M, Ghanbari F (2018) Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: Toxicity assessment and evaluation for industrial wastewater treatment. J Clean Prod 195:1389–1397. https://doi.org/10.1016/J.JCLEPRO.2018.05.137

    Article  CAS  Google Scholar 

  5. Raza W, Lee J, Raza N et al (2019) Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J Ind Eng Chem 71:1–18. https://doi.org/10.1016/J.JIEC.2018.11.024

    Article  Google Scholar 

  6. Taqvi SIH, Solangi AR, Buledi JA et al (2022) Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: An operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere 294:133760. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133760

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Wang J, Jiao C et al (2018) RETRACTED: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols. Talanta 179:676–684. https://doi.org/10.1016/J.TALANTA.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Abedini R (2019) Enhanced antifouling properties of poly(ethersulfone) nano-composite membrane filled with nano-clay particles. Polym Bull 76:1737–1753. https://doi.org/10.1007/S00289-018-2464-1

    Article  CAS  Google Scholar 

  9. Zheng X, Khan MT, Cao X, Croue JP (2021) Importance of origin and characteristics of biopolymers in reversible and irreversible fouling of ultrafiltration membranes. Sci Total Environ 784:147157. https://doi.org/10.1016/J.SCITOTENV.2021.147157

    Article  CAS  PubMed  Google Scholar 

  10. Hussain CM, Paulraj MS, Nuzhat S (2022) Source reduction, waste minimization, and cleaner technologies. Source Reduct Waste Minimization. https://doi.org/10.1016/B978-0-12-824320-6.00002-2

    Article  Google Scholar 

  11. Nasir AM, Awang N, Jaafar J et al (2021) Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. J Water Process Eng 40:101878. https://doi.org/10.1016/J.JWPE.2020.101878

    Article  Google Scholar 

  12. de Castro TR, de Macedo DC, de Genaro Chiroli DM et al (2021) The potential of cleaner fermentation processes for bioplastic production: a narrative review of polyhydroxyalkanoates (PHA) and polylactic acid (PLA). J Polym Environ 303(30):810–832. https://doi.org/10.1007/S10924-021-02241-Z

    Article  Google Scholar 

  13. Gu J, Xiao P, Chen P et al (2017) Functionalization of biodegradable pla nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:5968–5973. https://doi.org/10.1021/ACSAMI.6B13547/SUPPL_FILE/AM6B13547_SI_005.AVI

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZM, Gan ZQ, Bao RY et al (2020) Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. J Memb Sci 593:117420. https://doi.org/10.1016/J.MEMSCI.2019.117420

    Article  Google Scholar 

  15. Samree K, Srithai PU, Kotchaplai P et al (2020) Enhancing the antibacterial properties of PVDF membrane by hydrophilic surface modification using titanium dioxide and silver nanoparticles. Membranes (Basel) 10:1–18. https://doi.org/10.3390/MEMBRANES10100289

    Article  Google Scholar 

  16. Lakhotia SR, Mukhopadhyay M, Kumari P (2019) Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment. Sep Purif Technol 211:98–107. https://doi.org/10.1016/J.SEPPUR.2018.09.034

    Article  CAS  Google Scholar 

  17. Vatanpour V, Jouyandeh M, Akhi H et al (2022) Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere 290:133363. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133363

    Article  CAS  PubMed  Google Scholar 

  18. Chinyerenwa AC, Wang H, Zhang Q et al (2018) Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. Polymer (Guildf) 141:62–69. https://doi.org/10.1016/J.POLYMER.2018.03.011

    Article  CAS  Google Scholar 

  19. Zhang M, Jiang C, Wu Q et al (2022) Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite gas barrier membranes by anisotropic janus nanosheets compartibilizers. ACS Macro Lett. https://doi.org/10.1021/ACSMACROLETT.2C00139/SUPPL_FILE/MZ2C00139_SI_001.PDF

    Article  PubMed  Google Scholar 

  20. Chen J, Meng X, Tian Y et al (2020) Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance. J Memb Sci 616:118587. https://doi.org/10.1016/J.MEMSCI.2020.118587

    Article  CAS  Google Scholar 

  21. Nassar L, Hegab HM, Khalil H et al (2022) Development of green polylactic acid asymmetric ultrafiltration membranes for nutrient removal. Sci Total Environ 824:153869. https://doi.org/10.1016/J.SCITOTENV.2022.153869

    Article  CAS  PubMed  Google Scholar 

  22. Rajput S, Pittman CU, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J Colloid Interface Sci 468:334–346. https://doi.org/10.1016/J.JCIS.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  23. Bu D, Li N, Zhou Y et al (2020) Enhanced UV stability of N-halamine-immobilized Fe3O4@SiO2@TiO2 nanoparticles: Synthesis, characteristics and antibacterial property. New J Chem 44:10352–10358. https://doi.org/10.1039/D0NJ01439G

    Article  CAS  Google Scholar 

  24. Bobirică C, Bobirică L, Râpă M et al (2020) Photocatalytic degradation of ampicillin using PLA/TiO2 hybrid nanofibers coated on different types of fiberglass. Water 12:176. https://doi.org/10.3390/W12010176

    Article  Google Scholar 

  25. Syamsul Bahri S, Harun Z, Norhayati W et al (2019) The influence of Fe doped TiO2 as inorganic additive on the properties of polysulfone ultrafitration membrane. Malaysian J Fundam Appl Sci 15:725–730

    Google Scholar 

  26. Aseri NS, Lau WJ, Goh PS et al (2019) Preparation and characterization of polylactic acid-modified polyvinylidene fluoride hollow fiber membranes with enhanced water flux and antifouling resistance. J Water Process Eng 32:100912. https://doi.org/10.1016/j.jwpe.2019.100912

    Article  Google Scholar 

  27. Zhang D, Jin XZ, Huang T et al (2019) Electrospun fibrous membranes with dual-scaled porous structure: Super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation. ACS Appl Mater Interfaces 11:5073–5083. https://doi.org/10.1021/ACSAMI.8B19523/SUPPL_FILE/AM8B19523_SI_006.AVI

    Article  CAS  PubMed  Google Scholar 

  28. Sanjeevi S, Shanmugam V, Kumar S et al (2021) Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci Rep 111(11):1–11. https://doi.org/10.1038/s41598-021-92457-9

    Article  CAS  Google Scholar 

  29. Hasanuddin NI, Mokhtar WNAW, Othaman R, Anuar FH (2022) Poly(lactic acid)-poly(ethylene glycol)/magnesium silicate membrane for methylene blue removal: Adsorption behavior, mechanism ionic strength and reusability studies. Membranes 12:198. https://doi.org/10.3390/MEMBRANES12020198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen H, Li Y, Yao W et al (2021) Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane. Compos Part B Eng 222:109042. https://doi.org/10.1016/J.COMPOSITESB.2021.109042

    Article  CAS  Google Scholar 

  31. Alkarbouly Basma SM, Waisi I (2022) Fabrication of electrospun nanofibers membrane for emulsified oil removal from oily wastewater. Baghdad Sci J. https://doi.org/10.21123/bsj.2022.6421

    Article  Google Scholar 

  32. Shao S, Fu W, Li X et al (2019) Membrane fouling by the aggregations formed from oppositely charged organic foulants. Water Res 159:95–101. https://doi.org/10.1016/J.WATRES.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  33. Xiong Z, Zhong Y, Lin H et al (2017) PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. J Memb Sci 533:103–111. https://doi.org/10.1016/J.MEMSCI.2017.03.028

    Article  CAS  Google Scholar 

  34. Zhou S, Zhang Y, Ni L et al (2021) Applied organic-inorganic nanocomposite of PLA-TiO2 for preparing polysulfone membrane: Structure, performance and UV-assisted cleaning strategy. Water Sci Technol 83:198–211. https://doi.org/10.2166/WST.2020.564

    Article  CAS  PubMed  Google Scholar 

  35. Asadi A, Zinatizadeh AA, Van Loosdrecht M (2018) Hygienic water production in an innovative air lift bioreactor followed by high antifouling ultrafiltration membranes modified by layer-by-layer assembly. J Clean Prod 182:27–37. https://doi.org/10.1016/J.JCLEPRO.2018.02.037

    Article  CAS  Google Scholar 

  36. Jafar Mazumder MA, Raja PH, Isloor AM et al (2020) Assessment of sulfonated homo and co-polyimides incorporated polysulfone ultrafiltration blend membranes for effective removal of heavy metals and proteins. Sci Reports 101(10):1–13. https://doi.org/10.1038/s41598-020-63736-8

    Article  CAS  Google Scholar 

  37. Lu D, Yao Z, Jiao L et al (2022) Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv Membr 2:100032. https://doi.org/10.1016/J.ADVMEM.2022.100032

    Article  Google Scholar 

  38. Yang Y, Lan Q, Wang Y (2020) Gradient nanoporous phenolics as substrates for high-flux nanofiltration membranes by layer-by-layer assembly of polyelectrolytes. Chinese J Chem Eng 28:114–121. https://doi.org/10.1016/J.CJCHE.2019.04.011

    Article  CAS  Google Scholar 

  39. Mohamat R, Bakar SA, Mohamed A et al (2023) Incorporation of different polymeric additives for polyvinylidene fluoride membrane fabrication and its performance on methylene blue rejection and antifouling improvement. J Polym Environ 31:3466–3479. https://doi.org/10.1007/S10924-023-02774-5/TABLES/4

    Article  CAS  Google Scholar 

  40. Sun H, Zhang Y, Sadam H et al (2019) Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. J Memb Sci 582:1–8. https://doi.org/10.1016/J.MEMSCI.2019.03.086

    Article  CAS  Google Scholar 

  41. You X, Ma T, Su Y et al (2017) Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. J Memb Sci 540:454–463. https://doi.org/10.1016/J.MEMSCI.2017.06.084

    Article  CAS  Google Scholar 

  42. Wang Q, Zhang S, Dai F et al (2021) Enhanced antifouling property of poly(aryl ether nitrile) ultrafiltration membranes via copolymerization with phenolphthalin. J Environ Chem Eng. https://doi.org/10.1016/J.JECE.2021.106132

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou R, Rana D, Matsuura T, Lan CQ (2019) Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Sep Purif Technol 217:154–163. https://doi.org/10.1016/J.SEPPUR.2019.02.013

    Article  CAS  Google Scholar 

  44. Gumbi NN, Hu M, Mamba BB et al (2018) Macrovoid-free PES/SPSf/O-MWCNT ultrafiltration membranes with improved mechanical strength, antifouling and antibacterial properties. J Memb Sci 566:288–300. https://doi.org/10.1016/J.MEMSCI.2018.09.009

    Article  CAS  Google Scholar 

  45. Dasari A, Quirós J, Herrero B et al (2012) Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J Memb Sci 405–406:134–140. https://doi.org/10.1016/J.MEMSCI.2012.02.060

    Article  Google Scholar 

  46. Moradi G, Zinadini S (2020) A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. Iran Polym J 29:827–840. https://doi.org/10.1007/S13726-020-00842-4/FIGURES/12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Sri Ramaswamy Memorial Institute of Science and Technology, Tamil Nadu, India for their help and for aiding in facilitating the research

Funding

No funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JG: Data curation; Formal analysis; Methodology; Roles/Writing—original draft; SK Jha: Writing—review and editing; Methodology; DC: Data curation; Formal analysis; AC: Data curation; Formal analysis; VKV: Investigation; Project administration; Supervision; Validation; Visualization,

Corresponding author

Correspondence to Vinoth Kumar Vaidyanathan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent for Participate

Not applicable.

Consent for Publication

Authors have given explicit consent to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, J., Jha, S.K., Chakrabarty, D. et al. Superior Performance of Titanium Coated Magnetic Mesoporous Silica Nanocomposite Based Poly(lactic acid) Membranes for the Separation of Chlorophenolic Organic Contaminants. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03098-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03098-0

Keywords

Navigation