Skip to main content

Advertisement

Log in

One-step and Scalable Synthesis of EAA-based Reprocessable Vitrimer with Superior Mechanical Properties

  • Research
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Vitrimer uniquely simultaneously combines the opposed thermoset-like properties (mechanical properties, durability, creep/solvent resistance) and thermoplastic-like properties (reshapability, recyclability), thus arousing great enthusiasms in the design, preparation and characterization of vitrimer. From a practical point of view, it is of great value to develop one-step and scalable synthetic procedures for high performance vitrimers. Starting from two highly available and non-expensive commodity materials, namely, ethylene acrylic acid copolymer (EAA) and triglycidyl isocyanurate (TGIC), a series of EAA-TGIC vitrimer materials with varying cross-linking degrees were prepared via a one-step, scalable and practical synthetic approach. Under mild melt compounding conditions, ring-opening of epoxy groups towards carboxyl groups in EAA occurred, resulting in cross-linking of EAA by dynamic β-hydroxyl ester covalent bonds. The formation of covalent cross-linking network in EAA-based vitrimer materials was proved by FTIR and swelling test. The thermo-mechanical, tensile, reprocessing and thermal properties of EAA-TGIC vitrimer were systematically studied. The results showed that EAA-TGIC vitrimer with high gel contents, and thus, excellent solvent resistances, were achieved. Tensile tests revealed that EAA-TGIC vitrimers exhibited premium mechanical properties with well-balanced rigidity and toughness and that the mechanical properties of recovered EAA-TGIC vitrimer remained almost unchanged compared to those of as-prepared EAA-TGIC vitrimer. This study offers a long sought-after solution for the cost-effective recycling of cross-linked polyethylenes and provides new possibilities for keeping difficult-to-recycle cross-linked polyethylenes in the circular loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Ji F, Liu X, Lin C, Zhou Y, Dong L, Xu S, Sheng D, Yang Y (2019) Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol Mater Eng 304(3):1800528

    Article  Google Scholar 

  2. Lessard JJ, Scheutz GM, Sung SH, Lantz KA, Epps TH, Sumerlin III (2020) Block Copolymer Vitrimers. J Am Chem Soc 142(1):283–289

    Article  CAS  PubMed  Google Scholar 

  3. Wang WY, Zha XJ, Bao RY, Ke K, Liu ZY, Yang MB, Yang W (2021) Vitrimers of polyolefin elastomer with physically cross-linked network. J Polym Res 28(6):210

    Article  Google Scholar 

  4. Demongeot A, Groote R, Goossens H, Hoeks T, Tournilhac F, Leibler L (2017) Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) Epoxy-Vitrimer Chemistry. Macromolecules 50(16):6117–6127

    Article  ADS  CAS  Google Scholar 

  5. Nicolas S, Richard T, Dourdan J, Lemiegre L, Audic J-L (2021) Shape memory epoxy vitrimers based on waste frying sunflower oil. J Appl Polym Sci 138 (36), e50904

  6. Tang Z, Liu Y, Guo B, Zhang L (2017) Malleable, mechanically strong, and adaptive elastomers enabled by Interfacial Exchangeable Bonds. Macromolecules 50(19):7584–7592

    Article  ADS  CAS  Google Scholar 

  7. Yang H, He C, Russell TP, Wang D (2020) Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. Giant 4:100035

    Article  Google Scholar 

  8. Chen Q, Yang Y, Yu Y, Xu H (2021) Reprocessable Thermosets”: synthesis and characterization of Vitrimer in the undergraduate lab course. J Chem Educ 98(4):1429–1435

    Article  CAS  Google Scholar 

  9. Krishnakumar B, Sanka RVSP, Binder WH, Parthasarthy V, Rana S, Karak N (2020) Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem Eng J 385:123820

    Article  CAS  Google Scholar 

  10. Denissen W, Winne JM, Du Prez FE (2016) Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 7(1):30–38

    Article  CAS  PubMed  Google Scholar 

  11. Guerre M, Taplan C, Winne JM, Du Prez FE (2020) Vitrimers: directing chemical reactivity to control material properties. Chem Sci 11(19):4855–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahmadi M, Hanifpour A, Ghiassinejad S, van Ruymbeke E (2022) Polyolefins vitrimers: design principles and applications. Chem Mater 34(23):10249–10271

    Article  CAS  Google Scholar 

  13. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like Malleable materials from Permanent Organic Networks. Science 334(6058):965–968

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Van Zee NJ, Nicolaÿ R (2020) Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog Polym Sci 104:101233

    Article  Google Scholar 

  15. Kumar A, Connal LA (2023) Biobased Transesterification Vitrimers. Macromol Rapid Commun 44(7):2200892

    Article  CAS  Google Scholar 

  16. Fazekas TJ, Alty JW, Neidhart EK, Miller AS, Leibfarth FA, Alexanian EJ (2022) Diversification of aliphatic C-H bonds in small molecules and polyolefins through radical chain transfer. Science 375(6580):545–550

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmad H, Rodrigue D (2022) Crosslinked polyethylene: a review on the crosslinking techniques, manufacturing methods, applications, and recycling. Polym Eng Sci 62(8):2376–2401

    Article  CAS  Google Scholar 

  18. Ciuprina F, Teissèdre G, Filippini JC (2001) Polyethylene crosslinking and water treeing. Polymer 42(18):7841–7846

    Article  CAS  Google Scholar 

  19. Jalil Morshedian PMH (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18(2):103–128

    Google Scholar 

  20. Kar GP, Saed MO, Terentjev EM (2020) Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. J Mater Chem A 8(45):24137–24147

    Article  CAS  Google Scholar 

  21. Wang S, Ma S, Qiu J, Tian A, Li Q, Xu X, Wang B, Lu N, Liu Y, Zhu J (2021) Upcycling of post-consumer polyolefin plastics to covalent adaptable networks via in situ continuous extrusion cross-linking. Green Chem 23(8):2931–2937

    Article  CAS  Google Scholar 

  22. Cheng L, Liu S, Yu W (2021) Recyclable ethylene-vinyl acetate copolymer vitrimer foams. Polymer 222:123662

    Article  CAS  Google Scholar 

  23. Guo H, Yue L, Rui G, Manas-Zloczower I (2020) Recycling poly(ethylene-vinyl acetate) with Improved Properties through dynamic cross-linking. Macromolecules 53(1):458–464

    Article  ADS  CAS  Google Scholar 

  24. Zhan S, Wang X, Sun J (2020) Rediscovering Surlyn: a supramolecular thermoset capable of Healing and Recycling. Macromol Rapid Commun 41:2000097

    Article  CAS  Google Scholar 

  25. Li S, Yu S, Feng Y (2016) Progress in and prospects for electrical insulating materials. High Voltage 1(3):122–129

    Article  Google Scholar 

  26. Li C, Yang Y, Xu G, Zhou Y, Jia M, Zhong S, Gao Y, Park C, Liu Q, Wang Y, Akram S, Zeng X, Li Y, Liang F, Cui B, Fang J, Tang L, Zeng Y, Hu X, Gao J, Mazzanti G, He J, Wang J, Fabiani D, Teyssedre G, Cao Y, Wang F, Zi Y (2022) Insulating materials for realising carbon neutrality: Opportunities, remaining issues and challenges. High Voltage 7(4):610–632

    Article  Google Scholar 

  27. Lepage Mathieu L, Simhadri C, Liu C, Takaffoli M, Bi L, Crawford B, Milani Abbas S, Wulff Jeremy E (2019) A broadly applicable cross-linker for aliphatic polymers containing C–H bonds. Science 366(6467):875–878

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Qi W, Jinping Q, Bi S, Ning C, Min N, Shuangqiao Y (2021) Prevention and control of waste plastics pollution in China. Strategic Study of Chinese Academy of Engineering 23(1):160–166

    Google Scholar 

  29. Jehanno C, Alty J, Roosen M, De Meester S, Dove A, Chen E, Leibfarth F, Sardon H (2022) Critical advances and future opportunities in upcycling commodity polymers. Nature 603:803–814

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Batog AE, Ivan PPk, Penczek P (1999) Aliphatic-Cycloaliphatic Epoxy Compounds and Polymers, in Polymer Latexes - Epoxide Resins - Polyampholytes. Advances in Polymer Science 144, 49–113. Springer, Berlin, Heidelberg

  31. Marx P, Wiesbrock F (2021) Expanding Monomers as Anti-Shrinkage Additives Polymers, Polymers 13(5), 806

  32. Maaz M, Riba-Bremerch A, Guibert C, Van Zee NJ, Nicolaÿ R (2021) Synthesis of polyethylene vitrimers in a single step: consequences of Graft structure, reactive extrusion conditions, and Processing Aids. Macromolecules 54(5):2213–2225

    Article  ADS  CAS  Google Scholar 

  33. Ricarte RG, Tournilhac F, Cloître M, Leibler L (2020) Linear Viscoelasticity and Flow of Self-Assembled vitrimers: the case of a Polyethylene/Dioxaborolane system. Macromolecules 53(5):1852–1866

    Article  ADS  CAS  Google Scholar 

  34. Capelot M, Unterlass MM, Tournilhac F, Leibler L (2012) Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett 1(7):789–792

    Article  CAS  PubMed  Google Scholar 

  35. Zou W, Dong J, Luo Y, Zhao Q, Xie T (2017) Dynamic covalent polymer networks: from Old Chemistry to Modern Day Innovations. Adv Mater 29(14):1606100

    Article  Google Scholar 

  36. Feng Z, Hu J, Zuo H, Ning N, Zhang L, Yu B, Tian M (2019) Photothermal-Induced Self-Healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl Mater Interfaces 11(1):1469–1479

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Tang Z, Wu S, Guo B (2019) Integrating Sacrificial Bonds into dynamic covalent networks toward mechanically robust and malleable elastomers. ACS Macro Lett 8(2):193–199

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Yu X, Zhang H, Guo J, Hu J, Li M-H (2020) Fully Biobased Vitrimers from glycyrrhizic acid and soybean oil for Self-Healing, shape memory, Weldable, and recyclable materials. ACS Sustain Chem Eng 8(16):6479–6487

    Article  CAS  Google Scholar 

  39. Yang X, Guo L, Xu X, Shang S, Liu H (2020) A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater Design 186:108248

    Article  CAS  Google Scholar 

  40. Zhang G, Zhou X, Liang K, Guo B, Li X, Wang Z, Zhang L (2019) Mechanically robust and recyclable EPDM Rubber Composites by a Green Cross-Linking Strategy. ACS Sustain Chem Eng 7(13):11712–11720

    Article  CAS  Google Scholar 

  41. Elling BR, Dichtel WR (2020) Reprocessable cross-linked polymer networks: are Associative Exchange Mechanisms Desirable? ACS Cent Sci 6(9):1488–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng P, McCarthy TJ, Surprise A (1954) from : Siloxane Equilibration Is a Simple, Robust, and Obvious Polymer Self-Healing Mechanism. Journal of the American Chemical Society 2012, 134 (4), 2024–2027

  43. Schmolke W, Perner N, Seiffert S (2015) Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature Self-Healing. Macromolecules 48(24):8781–8788

    Article  ADS  CAS  Google Scholar 

  44. Saed MO, Terentjev EM (2020) Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Sci Rep 10(1):6609

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saed MO, Lin X, Terentjev EM (2021) Dynamic Semicrystalline Networks of Polypropylene with Thiol-Anhydride Exchangeable Crosslinks. ACS Appl Mater Interfaces 13(35):42044–42051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YJ Zhang express special thanks to Ju Yi, chief of Shanghai Co-polymer Chemicals Co., Ltd.

Funding

The work was supported by a grant from the Department of Education of Liaoning (General Program, Grant No. LJKMZ20220902). Sponsored by CNPC Innovation Found (2021DQ02-0706).

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhang and Z. Lin conceived the study, designed the experiments, and wrote the manuscript. Z. Lin performed most of the experiments. X. Li and G. Li helped in discussing the results and polishing the language. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yongjie Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, Z., Li, X. et al. One-step and Scalable Synthesis of EAA-based Reprocessable Vitrimer with Superior Mechanical Properties. J Polym Environ 32, 1080–1089 (2024). https://doi.org/10.1007/s10924-023-03030-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03030-6

Keywords

Navigation