Skip to main content

Advertisement

Log in

A Review on Eco-friendly Isolation of Lignin by Natural Deep Eutectic Solvents from Agricultural Wastes

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Agricultural residues have attracted the attention of researchers in recent years due to their potential as a waste source that is abundantly available worldwide and can be used to create value-added products with economic and environmental benefits. Lignin is the second most inexhaustible natural biopolymer, delivering the most energetic material of all for the development of eco-friendly, biodegradable, and low-cost value-added products. Commonly lignin used as a macromolecule for the synthesis of low molecular weight chemical sand fuel. The present review article tries to present to fulfil research gap between extraction and isolation of lignin through natural deep eutectic solvents (NADES), green/sustainable methods which is fast-emerging techniques to extract valuable products. In this review article, we covered various methods on pre-treatment of lignocellulosic materials using NADES as exclusive and multifunctional solvents via the green integrated biorefinery approach. It also contains comparison between advantages and disadvantages of pre-treatment methods vs NADES of various biomass. Beside those various methods of sustainable synthesis of NADES and its properties; processing of lignin for production of value–added products, applications of lignin derived by green synthesis, and challenges to current state-of-the art technologies and future perspectives and current Markets are reviewed. We concluded that NADES can be effectively used for low-cost synthesis in the purification and isolation of lignin from agro wastes for attaining high yields which ultimately enhance economic value of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Anwar Z, Gulfraz M, Irshad M (2019) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163–173

    Google Scholar 

  2. Perez J et al (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    CAS  PubMed  Google Scholar 

  3. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Market Res 4(1):26–32

    CAS  Google Scholar 

  4. Brodeur G et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    PubMed  PubMed Central  Google Scholar 

  5. Nishimura H et al (2018) Direct evidence for alpha ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8(1):6538

    PubMed  PubMed Central  Google Scholar 

  6. Zhao Y et al (2020) Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J Clean Prod 253:120076

    CAS  Google Scholar 

  7. Ahmad E, Pant KK (2018) Lignin Conversion: A Key to the Concept of Lignocellulosic Biomass-Based Integrated Biorefinery. Waste Biorefinery, Netherlands, pp 409–444

    Google Scholar 

  8. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599.

    CAS  PubMed  Google Scholar 

  9. Soltes EJ, Milne TA (eds) (1988) Pyrolysis oils from biomass: producing, analyzing, and upgrading. Pyrolysis Oils from Biomass, pp i–vi

    Google Scholar 

  10. Kammerer DR et al (2014) Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res Int 65:2–12

    CAS  Google Scholar 

  11. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41

    CAS  PubMed  Google Scholar 

  12. Galanakis CM (2020) Food waste recovery : processing technologies, industrial techniques, and applications. Academic Press, Cambridge

    Google Scholar 

  13. Vásquez-Garay F et al (2021) A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability 13(5):2697

    Google Scholar 

  14. Chen Z, Reznicek WD, Wan C (2018) Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Biores Technol 263:40–48

    CAS  Google Scholar 

  15. Renders T et al (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10(7):1551–1557

    CAS  Google Scholar 

  16. Sathitsuksanoh N et al (2014) Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem 16(3):1236–1247

    CAS  Google Scholar 

  17. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioRes. 6:3547–3568

    Google Scholar 

  18. Cocero MJ et al (2018) Understanding biomass fractionation in subcritical & supercritical water. J Supercrit Fluids 133:550–565

    CAS  Google Scholar 

  19. Husanu E et al (2020) Exploiting Deep eutectic solvents and ionic liquids for the valorization of chestnut shell waste. ACS Sustainable Chem Eng 8(50):18386–18399

    Google Scholar 

  20. Melro E et al (2021) Revisiting lignin: a tour through its structural features, characterization methods and applications. New J Chem 45(16):6986–7013

    CAS  Google Scholar 

  21. Smink D, Kersten SRA, Schuur B (2020) Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep Purif Technol 235:116127

    Google Scholar 

  22. Tian D et al (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297

    CAS  PubMed  Google Scholar 

  23. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    CAS  PubMed  Google Scholar 

  24. Tribot A et al (2019) Wood-lignin: Supply, extraction processes and use as bio-based material. Eur Polymer J 112:228–240

    CAS  Google Scholar 

  25. Baruah J et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  26. Hiloidhari M et al (2020) Agroindustry wastes: biofuels and biomaterials feedstocks for sustainable rural development. Refining Biomass Residues for Sustainable Energy and Bioproducts. Elsevier, Netherlands, pp 357–388

    Google Scholar 

  27. Sharma S, Kumar AK (2018) Role of Natural Deep Eutectic Solvents (NADES) in the Pretreatment of Lignocellulosic Biomass for an Integrated Biorefinery and Bioprocessing Concept. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore, pp 73–109

    Google Scholar 

  28. Fortunati E et al (2016) Extraction of Lignocellulosic Materials From Waste Products Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. Elsevier, Netherlands, pp 1–38

    Google Scholar 

  29. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    PubMed  Google Scholar 

  30. Sarkar N et al (2012) Bioethanol production from agricultural wastes: an overview. Renewable Energy 37(1):19–27

    CAS  Google Scholar 

  31. Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    CAS  PubMed  Google Scholar 

  32. Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    CAS  PubMed  Google Scholar 

  33. Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose: scientific note. Appl Biochem Biotechnol 24–25:67–73

    Google Scholar 

  34. Rollin JA et al (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30

    CAS  PubMed  Google Scholar 

  35. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production a review. ChemInform. https://doi.org/10.1002/chin.200301272

    Article  Google Scholar 

  36. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II. Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Bioref 6(5):561–579

    CAS  Google Scholar 

  37. Cybulska I et al (2014) Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour Technol 153:165–172

    CAS  PubMed  Google Scholar 

  38. Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenerg 58:390–405

    CAS  Google Scholar 

  39. Girio FM et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    CAS  PubMed  Google Scholar 

  40. Alvira P et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    CAS  PubMed  Google Scholar 

  41. Koullas DP, Christakopoulos P, Kekos D, Macris BJ, Koukios EG (1992) Correlating the effect of pretreatment on the enzymatic hydrolysis of straw. Biotechnol Bioeng 39:113–116

    CAS  PubMed  Google Scholar 

  42. Puri VP (1984) Effect of crystallinity and degree of polymerisation of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    CAS  PubMed  Google Scholar 

  43. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis the role of amorphogenesis. Biotechnol Biofuels 3:1–11

    Google Scholar 

  44. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In Twenty-First Symposium on Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-First Symposium on Biotechnology for Fuels and Chemicals Held May 2–6, 1999, in Fort Collins, Colorado, Humana Press p 5–37

  45. Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez JJ (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571

    CAS  Google Scholar 

  46. Dale BE, Weaver J, Byers FM (1999) Extrusion processing for ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 77:35–45

    Google Scholar 

  47. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    CAS  PubMed  Google Scholar 

  48. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018

    CAS  PubMed  Google Scholar 

  49. Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett 23:1327–1333

    CAS  Google Scholar 

  50. Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials a review. BioResources 2:472–499

    CAS  Google Scholar 

  51. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose inhibitors and detoxification. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  52. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    CAS  PubMed  Google Scholar 

  53. Palmowski LM, Müller JA (2000) Influence of the size reduction of organic waste on their anaerobic digestion. Water Science Technol 41:155–162

    CAS  Google Scholar 

  54. Delgenès JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzy Microb Technol 19:220–225

    Google Scholar 

  55. Motte JC, Sambusiti C, Dumas C, Barakat A (2015) Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: an innovative strategy for biofuels and volatile fatty acids recovery. Appl Energy 147:67–73

    CAS  Google Scholar 

  56. Saha BC, Cotta MA (2006) Ethanol Production from alkaline peroxide pretreated enzymatically saccharified Wheat straw. Biotechnol Prog 22:449–453

    CAS  PubMed  Google Scholar 

  57. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96(18):2007–2013

    CAS  PubMed  Google Scholar 

  58. Kim DY et al (2016) Two-stage, acetic acid-aqueous ammonia, fractionation of empty fruit bunches for increased lignocellulosic biomass utilization. Bioresour Technol 199:121–127

    CAS  PubMed  Google Scholar 

  59. Chen W-H, Tu Y-J, Sheen H-K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88(8):2726–2734

    CAS  Google Scholar 

  60. Saha BC et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700

    CAS  Google Scholar 

  61. Li Z, Li WZ, Hu H, Zu S, Wang Z, Jameel H, Chang HM (2014) Pretreatment of corn stover for sugar production by a two-step process using dilute hydrochloric acid followed by aqueous ammonia. Bioresources 9:4622–4635

    Google Scholar 

  62. Liu Q et al (2016) Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process. Bioresour Technol 211:435–442

    CAS  PubMed  Google Scholar 

  63. Zu S et al (2014) Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour Technol 152:364–370

    CAS  PubMed  Google Scholar 

  64. Kim I et al (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohyd Polym 99:563–567

    CAS  Google Scholar 

  65. Kim I et al (2015) Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel 143:285–289

    CAS  Google Scholar 

  66. Avci A et al (2013) Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresour Technol 130:603–612

    CAS  PubMed  Google Scholar 

  67. Geddes CC et al (2010) Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 101(6):1851–1857

    CAS  PubMed  Google Scholar 

  68. Li H et al (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour Technol 100(13):3245–3251

    CAS  PubMed  Google Scholar 

  69. Palmqvist, B., Processing Lignocellulosic Biomass into Ethanol - Implications of High Solid Loadings. 2014.

  70. Cannella D, Chia-wen CH, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rajan K, Carrier DJ (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenerg 62:222–227

    CAS  Google Scholar 

  72. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    CAS  PubMed  Google Scholar 

  73. Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenerg 32(12):1130–1135

    CAS  Google Scholar 

  74. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    CAS  PubMed  Google Scholar 

  75. Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE, Dale BE (1992) Pretreatment of Lignoceilulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 34–35:5–21

    Google Scholar 

  76. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    CAS  Google Scholar 

  77. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48:3713–3729

    CAS  Google Scholar 

  78. Sun R, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind Crops Prod 4:127–145

    CAS  Google Scholar 

  79. Yoon LW et al (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86(10):1342–1348

    CAS  Google Scholar 

  80. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun XF et al (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106

    CAS  PubMed  Google Scholar 

  82. Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. Tappi 68(8):94–97

    CAS  Google Scholar 

  83. Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials a review. BioResources 2:707–738

    CAS  Google Scholar 

  84. Brownell HH, Saddler JN (1987) Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnol Bioeng 29:228–235

    CAS  PubMed  Google Scholar 

  85. Weil J, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M, ... Ladisch MR (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40.

  86. Ballesteros M et al (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    CAS  Google Scholar 

  87. Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124:1133–1142

    Google Scholar 

  88. Delgenès JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzy Microb Technol 19:220–225

    Google Scholar 

  89. Daza Serna LV, Orrego Alzate CE, Cardona Alzate CA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    CAS  PubMed  Google Scholar 

  90. Gu T (2013) Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide as a Green Solvent, Green Biomass Pretreatment for Biofuels Production. Springer, Netherlands, Dordrecht, pp 107–125

    Google Scholar 

  91. Harmsen PF, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR—Food & Biobased Research, Netherlands

    Google Scholar 

  92. Narayanaswamy N et al (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102(13):6995–7000

    CAS  PubMed  Google Scholar 

  93. Kim Y et al (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48(4–5):408–415

    CAS  PubMed  Google Scholar 

  94. Kobayashi N, Okada N, Hirakawa A, Sato T, Kobayashi J, Hatano S, Mori S (2009) Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind Eng Chem Res 48:373–379

    CAS  Google Scholar 

  95. Tsao GT, Ladisch MR, Ladisch CM, Hsu TA (1981) U.S. Patent No. 4,281,063. Washington, DC: U.S. Patent and Trademark Office.

  96. Yu Q et al (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101(13):4895–4899

    CAS  PubMed  Google Scholar 

  97. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6(4):465–482

    CAS  Google Scholar 

  98. Van Rantwijk F, Sheldon RA (2007) Biocatalysis in Ionic Liquids. Chem Rev 107:2757–2785

    PubMed  Google Scholar 

  99. Ohno H, Fukaya Y (2009) Task Specific ionic liquids for cellulose technology. Chem Lett 38(1):2–7

    CAS  Google Scholar 

  100. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  PubMed  Google Scholar 

  101. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378

    CAS  Google Scholar 

  102. Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77(1):41–46

    CAS  Google Scholar 

  103. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13(2):71–193

    CAS  PubMed  Google Scholar 

  104. Lucas M et al (2010) Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles. ACS Appl Mater Interfaces 2(8):2198–2205

    CAS  PubMed  Google Scholar 

  105. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-7-90

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nikolić S et al (2010) Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem 122(1):216–222

    Google Scholar 

  107. Nitayavardhana S et al (2010) Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresour Technol 101(8):2741–2747

    CAS  PubMed  Google Scholar 

  108. Garcia A et al (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour Technol 102(10):6326–6330

    CAS  PubMed  Google Scholar 

  109. Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102(14):7119–7123

    CAS  PubMed  Google Scholar 

  110. Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299

    CAS  PubMed  Google Scholar 

  111. Velmurugan R, Muthukumar K (2012) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9

    CAS  Google Scholar 

  112. Niu K et al (2009) Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. J Chem Technol Biotechnol 84(8):1240–1245

    CAS  Google Scholar 

  113. Toma M, Bandow H, Vinatoru M, Maeda Y (2006) Ultrasonically assisted conversion of lignocellulosic biomass to ethanol. American Institute of Chemical Engineers.

  114. Zhu S et al (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40(9):3082–3086

    CAS  Google Scholar 

  115. Zhu S et al (2006) Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosys Eng 93(3):279–283

    Google Scholar 

  116. Liu J et al (2010) Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresour Technol 101(23):9355–9360

    CAS  PubMed  Google Scholar 

  117. Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of miscanthus x giganteus Using the Ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334

    CAS  Google Scholar 

  118. Intanakul P, Krairiksh M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217–225

    Google Scholar 

  119. Jung YH et al (2013) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    CAS  PubMed  Google Scholar 

  120. Tanaka K, Luesaiwong W, Hisanaga T (1997) Photocatalytic degradation of mono-, di- and trinitrophenol in aqueous TiO2 suspension. J Mol Catal A: Chem 122:67–74

    CAS  Google Scholar 

  121. Tanaka K, Calanag RCR, Hisanaga T (1999) Photocatalyzed degradation of lignin on TiO2. J Mol Catal A: Chem 138:287–294

    CAS  Google Scholar 

  122. Yu H et al (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100(21):5170–5175

    CAS  PubMed  Google Scholar 

  123. Zhang X et al (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegradation 60(3):159–164

    CAS  Google Scholar 

  124. Ma F et al (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101(24):9600–9604

    CAS  PubMed  Google Scholar 

  125. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631

    CAS  PubMed  Google Scholar 

  126. Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high lignin biomass. Appl Biochem Biotechnol 94:1–28

    CAS  PubMed  Google Scholar 

  127. da Costa Sousa L et al (2009) “Cradle-to-grave” assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    PubMed  Google Scholar 

  128. Dien BS et al (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour Technol 99(12):5216–5225

    CAS  PubMed  Google Scholar 

  129. Li C et al (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102(13):6928–6936

    CAS  PubMed  Google Scholar 

  130. Wyman C (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, London

    Google Scholar 

  131. Brandt A et al (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13(9):2489

    CAS  Google Scholar 

  132. Ha SH et al (2011) Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour Technol 102(2):1214–1219

    CAS  PubMed  Google Scholar 

  133. Ververis C et al (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98(2):296–301

    CAS  PubMed  Google Scholar 

  134. Hong S et al (2020) Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem 22(21):7219–7232

    CAS  Google Scholar 

  135. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res Int 23(10):9265–9275

    CAS  PubMed  Google Scholar 

  136. Kumar AK et al (2018) Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: a case study. J Mol Liq 260:313–322

    CAS  Google Scholar 

  137. Brandt A et al (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550

    CAS  Google Scholar 

  138. Procentese A et al (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36

    CAS  PubMed  Google Scholar 

  139. Liang X, Fu Y, Chang J (2019) Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Sep Purif Technol 210:409–416

    CAS  Google Scholar 

  140. Zhang Q et al (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146

    CAS  PubMed  Google Scholar 

  141. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318

    CAS  PubMed  Google Scholar 

  142. Elgharbawy AAM et al (2020) A grand avenue to integrate deep eutectic solvents into biomass processing. Biomass Bioenergy 137:105550

    CAS  Google Scholar 

  143. Hayyan A et al (2014) A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J Clean Prod 65:246–251

    CAS  Google Scholar 

  144. Gertrudes A et al (2017) How do animals survive extreme temperature amplitudes? the role of natural deep eutectic solvents. ACS Sustainable Chem Eng 5(11):9542–9553

    CAS  Google Scholar 

  145. Xing W et al (2018) Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J 333:712–720

    CAS  Google Scholar 

  146. Shen X-J et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21(2):275–283

    CAS  Google Scholar 

  147. Juneidi I, Hayyan M, Hashim MA (2018) Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem 66:33–60

    CAS  Google Scholar 

  148. Huang Y et al (2017) Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem 221:1400–1405

    CAS  PubMed  Google Scholar 

  149. Liu W et al (2018) Ascorbic acid and choline chloride: a new natural deep eutectic solvent for extracting tert-butylhydroquinone antioxidant. J Mol Liq 260:173–179

    CAS  Google Scholar 

  150. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609

    PubMed  PubMed Central  Google Scholar 

  151. Ali N, Zhang Q, Liu ZY, Li FL, Lu M, Fang XC (2020) Emerging technologies for the pretreatment of lignocellulosic materials for biobased products. Appl Microbiol Biotechnol 104:455–473

    CAS  PubMed  Google Scholar 

  152. McMillan, J.D., Pretreatment of Lignocellulosic Biomass. 1994.

  153. Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CAS  PubMed  Google Scholar 

  154. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids Promising green solvents for lignocellulosic biomass utilization. Curr Opinion Green Sustainable Chem 5:5–11

    Google Scholar 

  155. Satlewal A et al (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36(8):2032–2050

    CAS  PubMed  Google Scholar 

  156. Achyuthan KE et al (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15(12):8641–8688

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Radotić K, Mićić M (2016) Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues. In: Micic Miodrag (ed) Sample Preparation Techniques for Soil, Plant and Animal Samples. Springer, New York, pp 365–376

    Google Scholar 

  158. Wang H et al (2019) From lignin to valuable products-strategies, challenges, and prospects. Bioresour Technol 271:449–461

    CAS  PubMed  Google Scholar 

  159. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 1101:3552–3599

    Google Scholar 

  160. Schutyser W et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908

    CAS  PubMed  Google Scholar 

  161. Lancefield CS et al (2017) Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem 19(1):202–214

    CAS  Google Scholar 

  162. Bhagia S, Li H, Gao X, Kumar R, Wyman CE (2016) Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnol Biofuels 9:1–15

    Google Scholar 

  163. Ibáñez AB, Bauer S (2014) Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass Bioenergy 68:75

    Google Scholar 

  164. Kim KH, Dutta T, Sun J, Simmons B, Singh S (2018) Biomass pretreatment using deep eutectic solvent from lignin derived phenols. Green Chem 20:809–815

    CAS  Google Scholar 

  165. Jiang B, Cao Tingyue, Feng Gu, Wenjuan Wu, Jin Yongcan (2017) Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf. ACS Sustainable Chem Eng 5:342–349

    CAS  Google Scholar 

  166. van Osch DJGP et al (2015) Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem 17(9):4518–4521

    Google Scholar 

  167. Calvaruso G, Clough MT, Rinaldi R (2017) Biphasic extraction of mechanocatalytically-depolymerized lignin from water-soluble wood and its catalytic downstream processing. Green Chem 19:2803–2811

    CAS  Google Scholar 

  168. Chen X et al (2016) DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L−1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration. Energy Environ Sci 9(4):1237–1245

    CAS  Google Scholar 

  169. Chang, H.M., Cowling, E. B., & Brown, W. , Comparative Studies on Cellulolytic Enzyme Lignin and milled wood lignin of sweetgum and spruce. 1975.

  170. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Bioref 8:836–856

    CAS  Google Scholar 

  171. Xu C et al (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500

    CAS  PubMed  Google Scholar 

  172. Jahan MS, Rumee JN, Rahman MM, Quaiyyum A (2014) Formic acid/acetic acid/water pulping of agricultural wastes. Cellul Chem Technol 48:111–118

    CAS  Google Scholar 

  173. Nuruddin M, Chowdhury A, Haque SA, Rahman M, Farhad SF, Jahan MS, Quaiyyum A (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Biomaterials 3:5–6

    Google Scholar 

  174. Chareonlimkun A et al (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101(11):4179–4186

    CAS  PubMed  Google Scholar 

  175. Chew KW et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    CAS  PubMed  Google Scholar 

  176. Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A., Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. 2007.

  177. Bilal M et al (2017) Biotransformation of lignocellulosic materials into value-added products-a review. Int J Biol Macromol 98:447–458

    CAS  PubMed  Google Scholar 

  178. Bilal M et al (2018) Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production—a review. Renew Sustain Energy Rev 82:436–447

    CAS  Google Scholar 

  179. Liguori R, Faraco V (2016) Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour Technol 215:13–20

    CAS  PubMed  Google Scholar 

  180. Velis CA, Vrancken KC (2015) Which material ownership and responsibility in a circular economy? Waste Manag Res 33(9):773–774

    PubMed  Google Scholar 

  181. Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X (2020) Integrated biorefinery approach to valorize winery waste A review from waste to energy perspectives. Sci Total Environ 719:137315

    CAS  PubMed  Google Scholar 

  182. Demirbas MF (2009) Biorefineries for biofuel upgrading a critical review. Appl Energy 86:S151–S161

    Google Scholar 

  183. Cicci A, Bravi M (2020) Leveraging novel green solvents to drive conceptual and practical biorefinery innovation. In Studies in surface science and catalysis, Vol 179. Elsevier, p 243–259

  184. Panić M, Andlar M, Tišma M, Rezić T, Šibalić D, Bubalo MC, Redovniković IR (2021) Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste Manag 120:340–350

    PubMed  Google Scholar 

  185. López-Linares JC, García-Cubero MT, Coca M, Lucas S (2021) A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass Bioenergy 147:106026

    Google Scholar 

  186. Gaudino EC, Tabasso S, Grillo G, Cravotto G, Dreyer T, Schories G, Telysheva G (2018) Wheat straw lignin extraction with bio-based solvents using enabling technologies. Comptes Rendus Chimie 21:563–571

    Google Scholar 

  187. Dai Y et al (2013) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem 85(13):6272–6278

    CAS  PubMed  Google Scholar 

  188. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 187:14–19

    CAS  PubMed  Google Scholar 

  189. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    CAS  PubMed  Google Scholar 

  190. Florindo C et al (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng 2(10):2416–2425

    CAS  Google Scholar 

  191. Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH (2020) The perspectives of natural deep eutectic solvents in agri food sector. Criti Rev Food Sci Nutr 60:2564–2592

    Google Scholar 

  192. Gutierrez MC, Ferrer ML, Mateo CR, del Monte F (2009) Freeze-drying of aqueous solutions of deep eutectic solvents a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25:5509–5515

    CAS  PubMed  Google Scholar 

  193. Bajkacz S, Adamek J (2018) Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal Methods 11:1330–1344

    Google Scholar 

  194. Gomez FJ, Espino M, Fernández MA, Silva MF (2018) A greener approach to prepare natural deep eutectic solvents. Chem Select 3:6122–6125

    CAS  Google Scholar 

  195. Ebringerová A, Hromádková Z (2010) An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chem 8:243–257

    Google Scholar 

  196. Reddy KO, Uma Maheswari C, Muzenda E, Shukla M, Rajulu AV (2016) Extraction and characterization of cellulose from pretreated Ficus (Peepal Tree) leaf fibers. J Nat Fibers. B13:54–64

    Google Scholar 

  197. Dinh Vu N, Thi Tran H, Bui ND, Duc Vu C (2017) Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method. Int J Polym Sci. https://doi.org/10.1155/2017/1063695

    Article  Google Scholar 

  198. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks a review. Bioresources Bioproc 4:1–19

    CAS  Google Scholar 

  199. Elhamarnah YA, Nasser M, Qiblawey H, Benamor A, Atilhan M, Aparicio S (2019) A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents. J Mol Liq 277:932–958

    CAS  Google Scholar 

  200. Liu Y et al (2018) Natural Deep eutectic solvents: properties, applications, and perspectives. J Nat Prod 81(3):679–690

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Anticona M et al (2020) High biological value compounds extraction from citrus waste with non-conventional methods. Foods 9(6):811

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kovács A, Neyts EC, Cornet I, Wijnants M, Billen P (2020) Modeling the physicochemical properties of natural deep eutectic solvents a review. ChemSusChem 13:3789–3804

    Google Scholar 

  203. Kohno Y, Ohno H (2012) Ionic liquid/water mixtures: from hostility to conciliation. Chem Commun (Camb) 48(57):7119–7130

    CAS  PubMed  Google Scholar 

  204. Xin R, Qi S, Zeng C, Khan FI, Yang B, Wang Y (2017) A functional natural deep eutectic solvent based on trehalose Structural and physicochemical properties. Food Chem 217:560–567

    CAS  PubMed  Google Scholar 

  205. Xie Y et al (2014) Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea. J Chem Eng Data 59(11):3344–3352

    CAS  Google Scholar 

  206. García G et al (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29(4):2616–2644

    Google Scholar 

  207. Ribeiro BD et al (2015) Menthol-based Eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustainable Chem Eng 3(10):2469–2477

    CAS  Google Scholar 

  208. Dai Y et al (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    CAS  PubMed  Google Scholar 

  209. Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionísio M, Paiva A (2016) Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215:534–540

    CAS  Google Scholar 

  210. Rengstl D, Fischer V, Kunz W (2014) Low-melting mixtures based on choline ionic liquids. Phys Chem Chem Phys 16:22815–22822

    CAS  PubMed  Google Scholar 

  211. Fakayode OA, Aboagarib EAA, Yan D, Li M, Wahia H, Mustapha AT, Ma H (2020) Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification Parametric screening and optimization via response surface methodology. Energy. 203:117872

    CAS  Google Scholar 

  212. Benvenutti L, del Pilar Sanchez-Camargo A, Zielinski AAF, Ferreira SRS (2020) NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product In silico and experimental approaches for solvent selection. J Mol Liq 315:113761

    CAS  Google Scholar 

  213. Elgharbawy AA, Hayyan A, Hayyan M, Mirghani ME, Salleh HM, Rashid SN, Alias Y (2019) Natural deep eutectic solvent-assisted pectin extraction from pomelo peel using sonoreactor experimental optimization approach. Processes 7:416

    CAS  Google Scholar 

  214. Skarpalezos D, Detsi A (2019) Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl Sci 9:4169

    CAS  Google Scholar 

  215. Socas-Rodríguez B, Torres-Cornejo MV, Álvarez-Rivera G, Mendiola JA (2021) Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl Sci 11:48974

    Google Scholar 

  216. Bubalo MC, Ćurko N, Tomašević M, Ganić KK, Redovniković IR (2016) Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem 200:159–166

    Google Scholar 

  217. Qi G, Xiong L, Tian L, Luo M, Chen X, Huang C, Chen X (2018) Ammonium sulfite pretreatment of wheat straw for efficient enzymatic saccharification. Sustainable Energy Technol Assessments 29:12–18

    Google Scholar 

  218. Tian D, Chandra RP, Lee JS, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10:1–10

    PubMed  PubMed Central  Google Scholar 

  219. Xu Q, Qin LY, Ji YN, Leung PK, Su HN, Qiao F, Li HM (2019) A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability. Electrochim Acta 293:426–431

    CAS  Google Scholar 

  220. Nakhle L, Kfoury M, Mallard I, Landy D, Greige-Gerges H (2021) Microextraction of bioactive compounds using deep eutectic solvents a review. Environ Chem Lett 19:3747–3759

    CAS  Google Scholar 

  221. Tang B, Bi W, Zhang H, Row KH (2014) Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtusa leaves. Chromatographia 77:373–377

    CAS  Google Scholar 

  222. Jin Q et al (2018) Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci Technol 74:119–131

    CAS  Google Scholar 

  223. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51(7):1412–1421

    CAS  Google Scholar 

  224. Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S (2021) Emerging technologies for biofuel production A critical review on recent progress, challenges and perspectives. J Environ Manag 290:112627

    CAS  Google Scholar 

  225. Moshi AP et al (2015) Combined production of bioethanol and biogas from peels of wild cassava Manihot glaziovii. Chem Eng J 279:297–306

    CAS  Google Scholar 

  226. Pourbafrani M et al (2010) Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol 101(11):4246–4250

    CAS  PubMed  Google Scholar 

  227. Fonseca DA et al (2014) Towards integrated biorefinery from dried distillers grains: Selective extraction of pentoses using dilute acid hydrolysis. Biomass Bioenerg 71:178–186

    CAS  Google Scholar 

  228. Martinez GA et al (2016) Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem 18(1):261–270

    Google Scholar 

  229. Schievano A et al (2015) An integrated biorefinery concept for olive mill waste management: supercritical CO2 extraction and energy recovery. Green Chem 17(5):2874–2887

    CAS  Google Scholar 

  230. Barana D et al (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crops Prod 86:31–39

    CAS  Google Scholar 

  231. Kehili M et al (2016) Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol Biofuels 9:261

    PubMed  PubMed Central  Google Scholar 

  232. Kaparaju P et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568

    CAS  PubMed  Google Scholar 

  233. Lettner M et al (2020) Barriers and incentives for the use of lignin-based resins: results of a comparative importance performance analysis. J Cleaner Produ 256:120520

    CAS  Google Scholar 

  234. Zevallos Torres LA et al (2020) Lignin as a potential source of high-added value compounds: a review. J Cleaner Prod 263:121499

    CAS  Google Scholar 

  235. Tarrés Q et al (2017) The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: from residue to value-added products. Ind Crops Prod 99:27–33

    Google Scholar 

  236. El-Aidie SAAM (2018) A review on chitosan: ecofriendly multiple potential applications in the food industry. Int J Adv Life Sci 1–14

  237. Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan-cellulose blends. Carbohydrate Polym 57:435–440

    CAS  Google Scholar 

  238. Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H (2005) Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Rad Phys Chem 73:287–295

    CAS  Google Scholar 

  239. Pandit A, Indurkar A, Deshpande C, Jain R, Dandekar P (2021) A systematic review of physical techniques for chitosan degradation. Carbohydrate Polym Technol Appl 2:100033

    CAS  Google Scholar 

  240. Jiang L, Li Y, Wang X, Zhang L, Wen J, Gong M (2008) Preparation and properties of nano-hydroxyapatite-chitosan-carboxymethyl cellulose composite scaffold. Carbohydrate Polym 74:680–684

    CAS  Google Scholar 

  241. Ul-Islam M et al (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28(8):1736–1743

    CAS  Google Scholar 

  242. Sanchis MJ, Carsí M, Gómez CM, Culebras M, Gonzales KN, Torres FG (2017) Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition. Carbohydrate Polym 157:353–360

    CAS  Google Scholar 

  243. Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S (2022) Preparation and applications of chitosan and cellulose composite materials. J Environ Manag 301:113850

    CAS  Google Scholar 

  244. Das S, Mondal A, Balasubramanian S (2017) Recent advances in modeling green solvents. Curr Opinion Green Sustainable Chem 5:37–43

    Google Scholar 

  245. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    CAS  Google Scholar 

  246. Ferry L et al (2015) Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab 113:135–143

    CAS  Google Scholar 

  247. Gordobil O, Egüés I, Labidi J (2016) Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. React Funct Polym 104:45–52

    CAS  Google Scholar 

  248. Lou T et al (2018) Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Colloids Surf, A 537:149–154

    CAS  Google Scholar 

  249. Ma Y et al (2017) Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer 114:113–121

    CAS  Google Scholar 

  250. Morandim-Giannetti AA et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohyd Polym 87(4):2563–2568

    CAS  Google Scholar 

  251. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101

    CAS  Google Scholar 

  252. Moubarik A et al (2013) Isolation and characterization of lignin from Moroccan sugar cane bagasse: Production of lignin–phenol-formaldehyde wood adhesive. Ind Crops Prod 45:296–302

    CAS  Google Scholar 

  253. Dessbesell L et al (2020) Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renewable Sustainable Energy Rev 123:109768

    CAS  Google Scholar 

  254. Borregaard. Industrial Applications. 2021 Available from: https://lignotech.com/Industrial-Applications. Accessed 02 Feb 2021

  255. Domsjö. Domsjo Lignin. 2021 Available from: http://www.domsjo.adityabirla.com/en/Sidor/Lignin.aspx. Accessed 02 Feb 2021

  256. Juliane Suota M, Merediane Kochepka D, Ganter Moura MG, Luiz Pirich C, Matos M, Esteves Magalhães WL, Pereira Ramos L (2021) Lignin functionalization strategies and the potential applications of its derivatives a review. Bioresources 16:6471–6511

    Google Scholar 

Download references

Funding

We are thankful to the Universiti Putra Malaysia for funding this work under Putra Grant-GP-IPS/2021/9698100.

Author information

Authors and Affiliations

Authors

Contributions

AM: Conceptualization, Methodology, Investigation, Formal analysis, Writing—Original Draft, Writing—Review & Editing. SPS: Investigation, Writing—Original Draft, Writing—Review & Editing. MJ: Supervision, Conceptualization, Writing—Review & Editing, Validation, Resources, Funding. MMN: Supervision, Conceptualization, Writing—Review & Editing. TSA: Validation, Writing—Review & Editing. NA: Conceptualization, Writing—Review & Editing.

Corresponding author

Correspondence to M. Jawaid.

Ethics declarations

Conflict of interest

The authors herewith declare that there is no conflict of interests regarding the publication of this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, A., Singh, S.P., Jawaid, M. et al. A Review on Eco-friendly Isolation of Lignin by Natural Deep Eutectic Solvents from Agricultural Wastes. J Polym Environ 31, 3283–3316 (2023). https://doi.org/10.1007/s10924-023-02817-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02817-x

Keywords

Navigation