Skip to main content

Advertisement

Log in

Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Depleting fossil fuel resources such as crude oil and coal are responsible for greenhouse gas emissions and global warming. Hence, converting biogenic waste such as animal waste and agricultural and industrial residues to biogas (CH4 and CO2) using anaerobic digestion (AD) is a sustainable, renewable, and environmentally friendly way of producing fuel. This nature-derived bioconversion process provides energy security and additional environmental services such as waste management. Furthermore, the liquid and solid waste generated through the AD process could be used as soil amendments to increase fertility. However, natural recalcitrance of biomass pertaining to the intricate network of polysaccharides and lignin, high crystallinity of cellulose, and reduced accessible surface area are some of the major bottlenecks to utilizing these resources as received. Pretreatment helps open up the plant cell wall by disrupting the lignin carbohydrate complex, de-lignifying the biomass, aiding the enzymes to access the polysaccharides due to higher surface area efficiently, and hydrolyze them into simple sugars with the help of bacterial consortium during AD process. This review gives an overview of physical, chemical, biological, and combinatorial pretreatment methods of lignocellulosic substrates and their effect on AD process. Biological pretreatment has emerged as a more desirable pretreatment method in terms of environment safety and efficiency for lignin degradation. Though the higher pretreatment duration has been observed as the most significant challenge that need to be addressed for its adoption on commercial scale. Therefore, research is required to either explore the naturally occurring or prepare the genetically engineered microbes for selective degradation of lignin at faster rates and high tolerance for variation in environment factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

WS:

Wheat straw

RS:

Rice straw

CS:

Corn stover

Mt:

Million tons

NMMO:

N-Methyl Morpholine N-oxide

AFEX:

Ammonia fiber explosion

EA:

Extractive ammonia pretreatment

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

VP:

Versatile peroxidase

References

  1. Vadenbo C, Tonini D, Astrup TF (2017) Environmental multiobjective optimization of the use of biomass resources for energy. Environ Sci Technol 51(6):3575–3583

    Article  CAS  PubMed  Google Scholar 

  2. Renewable Capacity Statistics (2018) International Renewable Energy Agency (IRENA), 2018 (https://www.irena.org/publications/2018/mar/renewable-capacity-statistics-2018)

  3. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. 1-32 ISRN biotechnology

  4. Callegari A, Bolognesi S, Cecconet D, Capodaglio AG (2019) Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. Crit Rev Environ Sci Technol 2019:1–53

    Google Scholar 

  5. Fivga A, Speranza LG, Branco CM, Ouadi M, Hornung A (2019) A review on the current state of the art for the production of advanced liquid biofuels. AIMS Energy 7(1):46–76

    Article  CAS  Google Scholar 

  6. Yadav M, Singh A, Balan V, Pareek N, Vivekanand V (2019) Biological treatment of lignocellulosic biomass by Chaetomium globosporum: process derivation and improved biogas production. Int J Biol Macromol 128:176–183

    Article  CAS  PubMed  Google Scholar 

  7. Meyer MA, Leckert FS (2018) A systematic review of the conceptual differences of environmental assessment and ecosystem service studies of biofuel and bioenergy production. Biomass Bioenergy 114:8–17

    Article  CAS  Google Scholar 

  8. Yadav M, Paritosh K, Pareek N, Vivekanand V (2019) Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation. J Clean Prod 213:75–88

    Article  CAS  Google Scholar 

  9. Satchwell AJ, Scown CD, Smith SJ, Amirebrahimi J, Jin L, Kirchstetter TW, Brown NJ, Preble CV (2018) Accelerating the deployment of anaerobic digestion to meet zero waste goals. Environ Sci Technol 52(23):13663–13669

    Article  CAS  PubMed  Google Scholar 

  10. Carrere H, Antonopoulou G, Affes R, Passos F, Battimeli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397

    Article  CAS  PubMed  Google Scholar 

  11. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  12. Devi S, Gupta C, Jat SL, Parmar MS (2017) Crop residue recycling for economic and environmental sustainability: the case of India. Open Agric 2:486–494

    Article  Google Scholar 

  13. Zheng Y, Shi J, Tu M, Cheng YS (2017) Chapter one - principles and development of lignocellulosic biomass pretreatment for biofuels. Adv Bioenergy 2:1–68

    Article  CAS  Google Scholar 

  14. Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102(6):1570–1581

    Article  CAS  PubMed  Google Scholar 

  15. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  PubMed  Google Scholar 

  16. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mole Biol 1(1):36–50

    CAS  Google Scholar 

  17. Sathitsuksanoh N, Zhua Z, Zhang YHP (2012) Cellulose solvent and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresour Technol 117:228–233

    Article  CAS  PubMed  Google Scholar 

  18. Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47(1):31–35

    Article  CAS  Google Scholar 

  19. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  20. Sills DL, Gossett JM (2012) Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses. Biotechnol Bioeng 109(4):894–903

    Article  CAS  PubMed  Google Scholar 

  21. Shirkavand E, Baroutian S, Gapes D, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – a review. Renew Sustain Energy Rev 54:217–234

    Article  CAS  Google Scholar 

  22. Persson T, Ren JL, Joelsson E, Jönsson AS (2009) Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour Technol 100(17):3906–3913

    Article  CAS  PubMed  Google Scholar 

  23. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101(13):4980–4991

    Article  CAS  PubMed  Google Scholar 

  24. Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372

    Article  CAS  Google Scholar 

  25. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    Article  CAS  Google Scholar 

  26. Kumar S, Paritosh K, Pareek N, Chawade A, Vivekanand V (2018) De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview. Renew Sustain Energy Rev 90:160–170

    Article  CAS  Google Scholar 

  27. Peng L, Appels L, Su H (2018) Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge. J Environ Manag 213:271–278

    Article  CAS  Google Scholar 

  28. Oh ST, Kang SJ, Azizi A (2018) Electrochemical communication in anaerobic digestion. Chem Eng J 353:878–889

    Article  CAS  Google Scholar 

  29. Nizami AS (2012) Anaerobic digestion: processes, products, and applications. In: Caruana DJ, Olsen AE (eds) Potential of activated sludge utilization. Nova Science, Commack

  30. Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. BioMed Res Int 1-20 Article ID 2370927

  31. Croce S, Wei Q, D’Imporzano G, Dong R, Adan F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34(8):1289–1304

    Article  CAS  PubMed  Google Scholar 

  32. Park S, Venditti RA, Abrecht DG, Jameel H, Pawlak JJ, Lee JM (2007) Surface and pore structure modification of cellulose fibers through cellulase treatment. J Appl Polym Sci 103(6):3833–3839

    Article  CAS  Google Scholar 

  33. Zhang R, Zhang Z (1999) Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol 68:235–245

    Article  CAS  Google Scholar 

  34. Kim HJ, Lee S, Kim J, Mitchell RJ (2013) Lee JH (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Zhang YL, Gu Y, Liu Z, Shen Z, Chu H, Zhou X (2014) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41

    Article  CAS  Google Scholar 

  36. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew energy 114B:1427–1441

    Article  Google Scholar 

  37. Sapci Z (2013) The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour Technol 128:487–494

    Article  CAS  PubMed  Google Scholar 

  38. Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102:6750–6756

    Article  CAS  PubMed  Google Scholar 

  39. Vivekanand V, Olsen EF, Eijsink VGH, Horn JS (2013) Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch. Bioresour Technol 127:343–349

    Article  CAS  PubMed  Google Scholar 

  40. Vivekanand V, Olsen EF, Eijsink VGH, Horn SJ (2014) Methane potential and enzymatic saccharification of steam exploded bagasse. BioResources 9:1311–1324

    Article  Google Scholar 

  41. Ferreira LC, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2014) Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242:254–259

    Article  CAS  Google Scholar 

  42. Chang KL, Thitikorn-amorn J, Hsieh JF, Ou BM, Chen SH, Ratanakhanokchai K, Huang PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35(1):90–95

    Article  CAS  Google Scholar 

  43. Hjorth M, Gränitz K, Adamsen APS, Møller HB (2011) Extrusion as a pretreatment to increase biogas production. Bioresour Technol 102:4989–4994

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira LC, Donoso-Bravo A, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2013) Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour Technol 143:251–257

    Article  CAS  PubMed  Google Scholar 

  45. Eskicioglu E, Monlau F, Barakat A, Ferrer I, Kaparaju P, Trably E, Carrere H (2017) Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production. Water Res 120:32–42

    Article  CAS  PubMed  Google Scholar 

  46. Qi W, Liu G, He C, Liu S, Lu S, Yue J, Wang Q, Wang Z, Yuan Z, Hu J (2019) An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem 21(6):1292–1304

    Article  CAS  Google Scholar 

  47. Gu Y, Guo J, Nawaz A, ul Haq I, Zhou X, Xu Y (2021) Comprehensive investigation of multiples factors in sulfuric acid pretreatment on the enzymatic hydrolysis of waste straw cellulose. Bioresour Technol 340:125740

    Article  CAS  PubMed  Google Scholar 

  48. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  49. da Costa SL, Jin M, Chundawat SP, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9(4):1215–1223

    Article  Google Scholar 

  50. da Costa SL, Foston M, Bokade V, Azarpira A, Lu F, Ragauskas AJ, Ralph J, Dale B, Balan V (2016) Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment. Green Chem 18(15):4205–4215

    Article  Google Scholar 

  51. Stoklosa RJ, Orjuela AP, da Costa SL, Uppugundla N, Williams DL, Dale BE, Hodge DB, Balan V (2017) Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes. Bioresour Technol 226:9–17

    Article  CAS  PubMed  Google Scholar 

  52. Jin M, da Costa SL, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale BE (2016) Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem 18(4):957–966

    Article  CAS  Google Scholar 

  53. McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094–3103

    Article  CAS  Google Scholar 

  54. Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719

    Article  CAS  Google Scholar 

  55. Zhao R, Zhang Z, Zhang R, Li M, Lei Z, Utsumi M, Sugiura N (2010) Methane production from rice straw pretreated by a mixture of acetic–propionic acid. Bioresour Technol 101:990–994

    Article  CAS  PubMed  Google Scholar 

  56. Kim JW, Kim KS, Lee JS, Park SM, Cho HY, Park JC, Kim JS (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour Technol 102:8992–8999

    Article  CAS  PubMed  Google Scholar 

  57. Reilly M, Dinsdale R, Guwy A (2015) Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresour Technol 189:258–265

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Zicari SM, Liu G, Li Y, Zhang R (2015) Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability. Bioresour Technol 185:150–157

    Article  CAS  PubMed  Google Scholar 

  59. Solé-Bundó M, Eskicioglu C, Garfí M, Carrère H, Ferrer I (2017) Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour Technol 237:89–98

    Article  PubMed  Google Scholar 

  60. Xiong ZY, Qina YH, Ma JY, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW (2017) Pretreatment of rice straw by ultrasound-assisted Fenton process. Bioresour Technol 227:408–411

    Article  CAS  PubMed  Google Scholar 

  61. Xie Z, Zou H, Zheng Y, Fu SF (2022) Improving anaerobic digestion of corn straw by using solid-state urea pretreatment. Chemosphere 293:133559

    Article  CAS  PubMed  Google Scholar 

  62. Teghammar A, Karimi K, Sárvári Horváth I, Taherzadeh MJ (2011) Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 36:116–120

    Article  Google Scholar 

  63. Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140

    Article  CAS  Google Scholar 

  64. Song Z, Yang G, Guo Y, Zhang T (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7:3223–3236

    Google Scholar 

  65. Heiske S (2013) Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment. J At Mol Phys 2013:1–8 Article ID 791353

  66. Song Z, Yang G, Liu X, Yan Z, Yuan Y, Liao Y (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9(4):e93801

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harun S, Geok SK (2016) Effect of sodium hydroxide pretreatment on rice straw composition. Indian J Sci Technol 9(21):1–9

  68. Chang KL, Chena XM, Wang XQ, Han YJ, Potprommanee L, Liu JY, Liao YL, Ning XA, Sun SY, Huang Q (2017) Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresour Technol 227:388–392

    Article  CAS  PubMed  Google Scholar 

  69. Nurika I, Shabrina EN, Azizah N, Suhartini S, Bugg TD, Barker GC (2022) Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB). Bioresour Technol Reports 17:100951

    Article  CAS  Google Scholar 

  70. Placido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23

    Article  Google Scholar 

  71. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  CAS  PubMed  Google Scholar 

  72. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40

    Article  CAS  PubMed  Google Scholar 

  73. Baker PW, Charlton A, Hale MDC (2015) Increased delignification by white rot fungi after pressure refining Miscanthus. Bioresour Technol 189:81–86

    Article  CAS  PubMed  Google Scholar 

  74. Rouches E, Gimbert IH, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198

    Article  CAS  Google Scholar 

  75. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valor 10(2):235–251

    Article  CAS  Google Scholar 

  76. Ruttimann-Johnson C, Salas L, Vicuna R, Kirk TK (1993) Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol 59:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) Lip-like genes in Phanerochaete sordida, and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6(4):5224–5259

    Article  Google Scholar 

  79. Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Biotechnol 10:309–326

    Article  Google Scholar 

  80. Frigon JC, Mehta P, Guiot SR (2012) Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 36:1–11

    Article  CAS  Google Scholar 

  81. Ghosh A, Bhattacharyya BC (1999) Biomethanation of white rotted and brown rotted rice straw. Bioprocess Eng 20:297

    Article  CAS  Google Scholar 

  82. Phutela UG, Sahni N, Sooch SD (2011) Fungal degradation of paddy straw for enhancing biogas production. Indian J Sci Technol 4:660–665

    Article  CAS  Google Scholar 

  83. Rastogi S, Soni R, Kaur J, Soni SK (2016) Unravelling the capability of Pyrenophora phaeocomes S-1 for the production of ligno-hemicellulolytic enzyme cocktail and simultaneous bio-delignification of rice straw for enhanced enzymatic saccharification. Bioresour Technol 222:458–469

    Article  CAS  PubMed  Google Scholar 

  84. Potumarthi R, Baadhe RR, Nayak P, Jetty A (2013) Simultaneous pretreatment and saccharification of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour Technol 128:113–117

    Article  CAS  PubMed  Google Scholar 

  85. Singh D, Zeng J, Laskar DD, Deobald L, Hiscox WC, Chen S (2011) Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass Bioenergy 35:1030–1040

    Article  CAS  Google Scholar 

  86. Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feed stocks. Bioresour Technol 102:7507–7512

    Article  CAS  PubMed  Google Scholar 

  87. Song L, Yu H, Ma F (2013) Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. BioResources 8:3802–3816

    Article  Google Scholar 

  88. Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through co-culturing of lignocellulose degrading microorganisms. Appl Biochem Biotechnol 175:3709–3728

    Article  CAS  PubMed  Google Scholar 

  89. Panahi HK, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M (2022) A comprehensive review on anaerobic fungi applications in biofuels production. Sci Total Environ 829:154521

    Article  Google Scholar 

  90. Dongyan Y, Jin LX, Jian GZ, Wu WY (2003) Improving biogas production of corn stalk through chemical and biological pretreatment: a preliminary comparison study. Trans Chinese Soc Agric Eng 16:209–213

    Google Scholar 

  91. Zeng J, Singh D, Chen S (2011) Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented within organic salts. Bioresour Technol 102:3206–3214

    Article  CAS  PubMed  Google Scholar 

  92. Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  CAS  PubMed  Google Scholar 

  94. Cianchetta S, Maggio BD, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173:609–623

    CAS  PubMed  Google Scholar 

  95. Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeter Biodegr 109:29–35

    Article  CAS  Google Scholar 

  96. Karimi M, Esfandiar R, Biria D (2017) Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Trichoderma viride sp. to enhance enzymatic sugar production. Renew Energy 104:88–95

    Article  CAS  Google Scholar 

  97. Yu J, Zhang J, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    Article  CAS  PubMed  Google Scholar 

  98. Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Article  CAS  PubMed  Google Scholar 

  99. Zhang S, Jiang M, Zhou Z, Zhao M, Li Y (2012) Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int Biodeter Biodegr 75:89–95

    Article  CAS  Google Scholar 

  100. Ishola MM, Isroi TMJ (2014) Effect of fungal and phosphoric acid pre-treatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol 165:9–12

    Article  CAS  PubMed  Google Scholar 

  101. Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N (2015) Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chem Eng J 278:85–91

    Article  CAS  Google Scholar 

  102. Dai Y, Si M, Chen Y, Zhang N, Zhou M, Liao Q, Shi D, Liu Y (2015) Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresour Technol 198:725–731

    Article  CAS  PubMed  Google Scholar 

  103. Zhang Y, Chen X, Gu Y, Zhou X (2015) A physicochemical method for increasing methane production from rice straw: extrusion combined with alkali pretreatment. Appl Energy 160:39–48

    Article  CAS  Google Scholar 

  104. Shi F, Xiang H, Li Y (2015) Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresour Technol 179:444–451

    Article  CAS  PubMed  Google Scholar 

  105. Yin Y, Wang J (2016) Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment. Radiat Phys Chem 123:63–67

    Article  CAS  Google Scholar 

  106. Kaur K, Phutela UG (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew Energy 92:178–184

    Article  CAS  Google Scholar 

  107. Mustafa AM, Poulsen TG, Xia Y, Sheng K (2017) Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour Technol 224:174–182

    Article  CAS  PubMed  Google Scholar 

  108. Guan R, Li X, Wachemo AC, Yuan H, Liu Y, Zou D, Zuo X, Gu J (2018) Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment. Sci Total Environ 637–638:9–17

    Article  PubMed  Google Scholar 

  109. Si M, Liu D, Liu M, Yan X, Gao C, Chai L, Shi Y (2019) Complementary effect of combined bacterial-chemical pretreatment to promote enzymatic digestibility of lignocellulose biomass. Bioresour Technol 272:275–280

    Article  CAS  PubMed  Google Scholar 

  110. Tsegaye B, Balomajumder C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Conver Manag 186:82–92

    Article  CAS  Google Scholar 

  111. Balan V, da Costa SL, Chundawat SP, Vismeh R, Jones AD, Dale BE (2008) Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J Ind Microbiol Biotechnol 35(5):293–301

    Article  CAS  PubMed  Google Scholar 

  112. Martínez-Patiño JS, Lu-Chau TA, Gullón B, Ruiz E, Romero I, Castro E, Lema JM (2018) Application of a combined fungal and diluted acid pretreatment on olive tree biomass. Ind Crops Prod 121:10–17

    Article  Google Scholar 

  113. Liu G, Qu Y (2018) Engineering of filamentous fungi for efficient conversion of lignocellulose: tools, recent advances and prospects. Biotechnol Adv 37(4):519–529

    Article  PubMed  Google Scholar 

  114. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-Aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30

    Article  PubMed  PubMed Central  Google Scholar 

  115. Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP (2017) Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol Biofuels 10:152

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang S, Liu G, Wang J, Yu J, Huang B, Xing M (2013) Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. J Ind Microbiol Biotechnol 40(6):633–641

    Article  CAS  PubMed  Google Scholar 

  117. Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genomeediting CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10(1):1–14

  119. Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, Luo H, Yao B, Su X (2018) A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnol Biofuels 11:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li Y, Zheng X, Zhang X, Bao L, Zhu Y, Qu Y, Zhao J, Qin Y (2016) The different roles of Penicillium oxalicum LaeA in the production of extracellular cellulase and β-xylosidase. Front Microbiol 7:2091

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhang J, Wu C, Wang W, Wang W, Wei D (2018) Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. Bioresour Bioprocess 5(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nakagawa Y, Sakamoto Y, Kikuchi S, Sato T, Yano A (2010) A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Microbiol Res 165:392–401

    Article  CAS  PubMed  Google Scholar 

  123. Bleve G, Lezzi C, Spagnolo S, Rampino P, Perrotta C, Mita G, Grieco F (2014) Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display. Appl Biochem Biotechnol 172:2916–2931

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Department of Biotechnology, Ministry of Science and Technology, Government of India (Ramalingaswami Re-Entry fellowship No. BT/RLF/Reentry/04/2013). Dr. Balan thank University of Houston and State of Texas for startup funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekanand Vivekanand.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Balan, V., Varjani, S. et al. Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. Bioenerg. Res. 16, 228–247 (2023). https://doi.org/10.1007/s12155-022-10489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10489-z

Keywords

Navigation