Skip to main content
Log in

Alkaline deep eutectic solvent for separation and extraction of lignin from lignocellulose biomass

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

As a natural biopolymer, lignin from agroforestry waste has a wide range of applications in the preparation of bio-based materials and petrochemical alternatives. However, the application of lignin depends on the effective separation from biomass. In recent years, deep eutectic solvents (DESs) have been used in the separation and extraction of lignin due to their simplicity of synthesis and effective separation of lignocellulose. Although some studies have been devoted to the separation and depolymerization of lignin by acidic DESs, fewer reports have focused on the effect of alkaline DESs. In this paper, some investigations are reviewed on the pretreatment of biomass using alkaline DESs in recent years and recent research progress on the separation and extraction of biomass lignin from alkaline DESs are summarized in terms of the types and nature of alkaline DES solvents, and the various influencing factors in the treatment of biomass, etc. For the sake of environmental and economic benefits, the effective recycling of solvents is discussed. Furthermore, this paper reviews the application of lignin extracted by alkaline DES in the preparation of value-added products such as platform compounds and bio-based modified materials, we expect that our review may offer the route for future studies to address he effective extraction of lignin from agricultural and forestry wastes by alkaline DESs and promote the high-value use of lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb) 70 – 1. https://doi.org/10.1039/b210714g

    Article  Google Scholar 

  2. Pishro KA, Murshid G, Mjalli FS et al (2020) Investigation of CO2 solubility in monoethanolamine hydrochloride based deep eutectic solvents and physical properties measurements. Chin J Chem Eng 28:2848–2856. https://doi.org/10.1016/j.cjche.2020.07.004

    Article  CAS  Google Scholar 

  3. Du B, Zhu H, Chai L et al (2021) Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode. Ind Crops Prod 170. https://doi.org/10.1016/j.indcrop.2021.113745

  4. Tan YT, Chua ASM, Ngoh GC (2020) Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - a review. Bioresour Technol 297:122522. https://doi.org/10.1016/j.biortech.2019.122522

    Article  CAS  PubMed  Google Scholar 

  5. González EJ, González-Miquel M, Díaz I et al (2020) Enhancing aqueous systems fermentability using hydrophobic eutectic solvents as extractans of inhibitory compounds. Sep Purif Technol 250. https://doi.org/10.1016/j.seppur.2020.117184

  6. Ye S, Xiong W, Liang J et al (2021) Refined regulation and nitrogen doping of biochar derived from ramie fiber by deep eutectic solvents (DESs) for catalytic persulfate activation toward non-radical organics degradation and disinfection. J Colloid Interface Sci 601:544–555. https://doi.org/10.1016/j.jcis.2021.05.080

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ashokkumar V, Venkatkarthick R, Jayashree S et al (2022) Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - a critical review. Bioresour Technol 344:126195. https://doi.org/10.1016/j.biortech.2021.126195

    Article  CAS  PubMed  Google Scholar 

  8. Ke Z, Mei M, Liu J et al (2022) Deep eutectic solvent assisted facile and efficient synthesis of nitrogen-doped magnetic biochar for hexavalent chromium elimination: mechanism and performance insights. J Clean Prod 357. https://doi.org/10.1016/j.jclepro.2022.132012

  9. Sharma V, Tsai ML, Chen CW et al (2022) Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: a review. Bioresour Technol 360:127631. https://doi.org/10.1016/j.biortech.2022.127631

    Article  CAS  PubMed  Google Scholar 

  10. Yuan J-M, Li H, Xiao L-P et al (2022) Valorization of lignin into phenolic compounds via fast pyrolysis: impact of lignin structure. Fuel 319. https://doi.org/10.1016/j.fuel.2022.123758

  11. Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6. https://doi.org/10.3389/fenrg.2018.00141

  12. Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14. https://doi.org/10.1039/c2gc35660k

  13. Tan YT, Ngoh GC, Chua ASM (2018) Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind Crops Prod 123:271–277. https://doi.org/10.1016/j.indcrop.2018.06.091

    Article  CAS  Google Scholar 

  14. Zhang H, Shi Y, Li M et al (2022) Extraction of lignin from corncob residue via a deep eutectic solvent for the preparation of nanoparticles by self-assembly. Chem Eng Sci 256. https://doi.org/10.1016/j.ces.2022.117694

  15. Yu H, Xue Z, Shi R et al (2022) Lignin dissolution and lignocellulose pretreatment by carboxylic acid based deep eutectic solvents. Ind Crops Prod 184. https://doi.org/10.1016/j.indcrop.2022.115049

  16. Mankar AR, Pandey A, Pant KK (2022) Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Bioresour Technol 345:126528. https://doi.org/10.1016/j.biortech.2021.126528

    Article  CAS  PubMed  Google Scholar 

  17. Lou R, Ma R, Lin K-t et al (2019) Facile extraction of wheat straw by Deep Eutectic Solvent (DES) to produce lignin nanoparticles. ACS Sustainable Chem Eng 7:10248–10256. https://doi.org/10.1021/acssuschemeng.8b05816

    Article  CAS  Google Scholar 

  18. Liu Y, Chen W, Xia Q et al (2017) Efficient cleavage of Lignin-Carbohydrate Complexes and Ultrafast extraction of Lignin oligomers from Wood Biomass by Microwave-assisted treatment with Deep Eutectic Solvent. Chemsuschem 10:1692–1700. https://doi.org/10.1002/cssc.201601795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Z-K, Hong S, Wen J-l et al (2019) Lewis Acid-facilitated deep Eutectic Solvent (DES) pretreatment for Producing High-Purity and Antioxidative Lignin. ACS Sustainable Chem Eng 8:1050–1057. https://doi.org/10.1021/acssuschemeng.9b05846

    Article  CAS  Google Scholar 

  20. Kim KH, Dutta T, Sun J et al (2018) Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:809–815. https://doi.org/10.1039/c7gc03029k

    Article  CAS  Google Scholar 

  21. Xie J, Cheng Z, Zhu S et al (2022) Lewis base enhanced Neutral deep eutectic solvent pretreatment for enzymatic hydrolysis of corn straw and lignin characterization. Renewable Energy 188:320–328. https://doi.org/10.1016/j.renene.2022.02.003

    Article  CAS  Google Scholar 

  22. Chen Z, Bai X, L A, et al (2018) High-solid lignocellulose Processing enabled by Natural Deep Eutectic Solvent for Lignin Extraction and industrially relevant production of renewable chemicals. ACS Sustainable Chem Eng 6:12205–12216. https://doi.org/10.1021/acssuschemeng.8b02541

    Article  CAS  Google Scholar 

  23. Xie J, Xu J, Cheng Z et al (2021) Phosphotungstic acid assisted with Neutral deep eutectic solvent boost corn straw pretreatment for enzymatic saccharification and lignin extraction. Ind Crops Prod 172. https://doi.org/10.1016/j.indcrop.2021.114058

  24. Ma CY, Xu LH, Zhang C et al (2021) A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. Bioresour Technol 341:125828. https://doi.org/10.1016/j.biortech.2021.125828

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Z, Chen X, Ali MF et al (2018) Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333. https://doi.org/10.1016/j.biortech.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  26. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  27. Abbott AP, Boothby D, Capper G et al (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  28. Mjalli FS, Murshid G, Al-Zakwani S et al (2017) Monoethanolamine-based deep eutectic solvents, their synthesis and characterization. Fluid Phase Equilib 448:30–40. https://doi.org/10.1016/j.fluid.2017.03.008

    Article  CAS  Google Scholar 

  29. Nowosielski B, Jamrógiewicz M, Łuczak J et al (2020) Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents. J Mol Liq 309. https://doi.org/10.1016/j.molliq.2020.113110

  30. Mjalli FS, Al-Azzawi M (2021) Aliphatic amino acids as possible hydrogen bond donors for preparing eutectic solvents. J Mol Liq 330. https://doi.org/10.1016/j.molliq.2021.115637

  31. Mjalli FS (2016) Novel amino acids based ionic liquids analogues: acidic and basic amino acids. J Taiwan Inst Chem Eng 61:64–74. https://doi.org/10.1016/j.jtice.2015.12.020

    Article  CAS  Google Scholar 

  32. Elgharbawy AAM, Hayyan M, Hayyan A et al (2020) A grand avenue to integrate deep eutectic solvents into biomass processing. Biomass Bioenergy 137. https://doi.org/10.1016/j.biombioe.2020.105550

  33. Li M, Zhu C, Fu T et al (2022) Effect of water on amine-based deep eutectic solvents (choline chloride + monoethanolamine): structure and physicochemical properties. J Environ Chem Eng 10. https://doi.org/10.1016/j.jece.2021.106952

  34. Pandey A, Rai R, Pal M et al (2014) How polar are choline chloride-based deep eutectic solvents? Phys Chem Chem Phys 16:1559–1568. https://doi.org/10.1039/c3cp53456a

    Article  CAS  PubMed  Google Scholar 

  35. Liu Q, Zhao X, Yu D et al (2019) Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chem 21:5291–5297. https://doi.org/10.1039/c9gc02306b

    Article  CAS  Google Scholar 

  36. Hong S, Shen X-J, Pang B et al (2020) In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chem 22:1851–1858. https://doi.org/10.1039/d0gc00006j

    Article  CAS  Google Scholar 

  37. Xia Q, Liu Y, Meng J et al (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721. https://doi.org/10.1039/c8gc00900g

    Article  CAS  Google Scholar 

  38. Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/c6gc01007e

    Article  CAS  Google Scholar 

  39. Ma CY, Xu LH, Sun Q et al (2022) Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresour Technol 352:127065. https://doi.org/10.1016/j.biortech.2022.127065

    Article  CAS  PubMed  Google Scholar 

  40. Guo Y, Xu L, Shen F et al (2022) Insights into lignocellulosic waste fractionation for lignin nanospheres fabrication using acidic/alkaline deep eutectic solvents. Chemosphere 286:131798. https://doi.org/10.1016/j.chemosphere.2021.131798

    Article  CAS  PubMed  Google Scholar 

  41. Hou XD, Li AL, Lin KP et al (2018) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249:261–267. https://doi.org/10.1016/j.biortech.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Li X, You T et al (2021) Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: lignin structural features and modification mechanism. Int J Biol Macromol 193:319–327. https://doi.org/10.1016/j.ijbiomac.2021.10.134

    Article  CAS  PubMed  Google Scholar 

  43. Ho MC, Wu TY, Chee SWQ et al (2019) An application of low concentration alkaline hydrogen peroxide at non-severe pretreatment conditions together with deep eutectic solvent to improve delignification of oil palm fronds. Cellulose 26:8557–8573. https://doi.org/10.1007/s10570-019-02646-z

    Article  CAS  Google Scholar 

  44. New EK, Wu TY, Tien Loong CB, Lee et al (2019) Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Saf Environ Prot 123:190–198. https://doi.org/10.1016/j.psep.2018.11.015

    Article  CAS  Google Scholar 

  45. Ong VZ, Wu TY, Lee C et al (2019) Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrason Sonochem 58:104598. https://doi.org/10.1016/j.ultsonch.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  46. Lee KM, Quek JD, Tey WY et al (2022) Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochem Eng J 187. https://doi.org/10.1016/j.bej.2022.108587

  47. Teng Z, Wang L, Huang B et al (2022) Synthesis of Green Deep Eutectic Solvents for Pretreatment Wheat Straw: enhance the solubility of typical lignocellulose. https://doi.org/10.3390/su14020657. Sustainability 14

  48. Ji Q, Yu X, Yagoub AE-GA et al (2020) Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind Crops Prod 149. https://doi.org/10.1016/j.indcrop.2020.112357

  49. Yue X, Suopajarvi T, Mankinen O et al (2020) Comparison of lignin fractions isolated from Wheat Straw using Alkaline and Acidic Deep Eutectic solvents. J Agric Food Chem 68:15074–15084. https://doi.org/10.1021/acs.jafc.0c04981

    Article  CAS  PubMed  Google Scholar 

  50. Lim W-L, Gunny AAN, Kasim FH et al (2019) Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose 26:4085–4098. https://doi.org/10.1007/s10570-019-02346-8

    Article  CAS  Google Scholar 

  51. Zhang F, He Z, Tu R et al (2020) Influence of Ultrasonic/Torrefaction Assisted Deep Eutectic Solvents on the upgrading of Bio-oil from Corn Stalk. ACS Sustainable Chem Eng 8:8562–8576. https://doi.org/10.1021/acssuschemeng.0c00837

    Article  CAS  Google Scholar 

  52. Liang Y, Duan W, An X et al (2020) Novel betaine-amino acid based natural deep eutectic solvents for enhancing the enzymatic hydrolysis of corncob. Bioresour Technol 310:123389. https://doi.org/10.1016/j.biortech.2020.123389

    Article  CAS  PubMed  Google Scholar 

  53. Mamilla JLK, Novak U, Grilc M et al (2019) Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 120:417–425. https://doi.org/10.1016/j.biombioe.2018.12.002

    Article  CAS  Google Scholar 

  54. Zhong Y, Wu J, Kang H et al (2022) Choline hydroxide based deep eutectic solvent for dissolving cellulose. Green Chem 24:2464–2475. https://doi.org/10.1039/d1gc04130d

    Article  CAS  Google Scholar 

  55. Vanholme R, Demedts B, Morreel K et al (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. https://doi.org/10.1104/pp.110.155119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li C, Zhao X, Wang A et al (2015) Catalytic Transformation of Lignin for the Production of Chemicals and fuels. Chem Rev 115:11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  CAS  PubMed  Google Scholar 

  57. Sun Z, Fridrich B, de Santi A et al (2018) Bright side of Lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schutyser W, Renders T, Van den S, Bosch et al (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908. https://doi.org/10.1039/c7cs00566k

    Article  CAS  PubMed  Google Scholar 

  59. Guadix-Montero S, Sankar M (2018) Review on Catalytic cleavage of C–C inter-unit linkages in Lignin Model compounds: towards Lignin Depolymerisation. Top Catal 61:183–198. https://doi.org/10.1007/s11244-018-0909-2

    Article  CAS  Google Scholar 

  60. Subbotina E, Rukkijakan T, Marquez-Medina MD et al (2021) Oxidative cleavage of C-C bonds in lignin. Nat Chem 13:1118–1125. https://doi.org/10.1038/s41557-021-00783-2

    Article  CAS  PubMed  Google Scholar 

  61. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008

    Article  CAS  Google Scholar 

  62. Balakshin M, Capanema E, Gracz H et al (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110. https://doi.org/10.1007/s00425-011-1359-2

    Article  CAS  PubMed  Google Scholar 

  63. Kato Y, Shimizu S, Akiyama T et al (2019) Effect of Counter Cation on Alkaline reaction of β-O-4-Type substructure in Lignin. J Wood Chem Technol 39:111–123. https://doi.org/10.1080/02773813.2018.1508302

    Article  CAS  Google Scholar 

  64. Yue X, Suopajarvi T, Sun S et al (2022) High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresour Technol 360:127570. https://doi.org/10.1016/j.biortech.2022.127570

    Article  CAS  PubMed  Google Scholar 

  65. Padmanabhan S, Schwyter P, Liu Z et al (2016) Delignification of miscanthus using ethylenediamine (EDA) with or without ammonia and subsequent enzymatic hydrolysis to sugars. 3 Biotech 6:23. https://doi.org/10.1007/s13205-015-0344-z

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simeonov SP, Afonso CAM (2016) Basicity and stability of urea deep eutectic mixtures. RSC Adv 6:5485–5490. https://doi.org/10.1039/c5ra24558c

    Article  ADS  CAS  Google Scholar 

  67. Loow YL, Wu TY, Yang GH et al (2018) Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour Technol 249:818–825. https://doi.org/10.1016/j.biortech.2017.07.165

    Article  CAS  PubMed  Google Scholar 

  68. Ho MC, Wu TY (2020) Sequential pretreatment with alkaline hydrogen peroxide and choline chloride:copper (II) chloride dihydrate - synergistic fractionation of oil palm fronds. Bioresour Technol 301:122684. https://doi.org/10.1016/j.biortech.2019.122684

    Article  CAS  PubMed  Google Scholar 

  69. Brandt A, Gräsvik J, Hallett JP et al (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15. https://doi.org/10.1039/c2gc36364j

    Article  Google Scholar 

  70. Meng X, Bhagia S, Wang Y et al (2020) Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind Crops Prod 146. https://doi.org/10.1016/j.indcrop.2020.112144

  71. Chundawat SP, Vismeh R, Sharma LN et al (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101:8429–8438. https://doi.org/10.1016/j.biortech.2010.06.027

    Article  CAS  PubMed  Google Scholar 

  72. Chen Z, Reznicek WD, Wan C (2018) Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour Technol 263:40–48. https://doi.org/10.1016/j.biortech.2018.04.058

    Article  CAS  PubMed  Google Scholar 

  73. Guo Z, Ling Z, Wang C et al (2018) Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour Technol 265:334–339. https://doi.org/10.1016/j.biortech.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  74. Shen X-J, Wen J-L, Mei Q-Q et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283. https://doi.org/10.1039/c8gc03064b

    Article  CAS  Google Scholar 

  75. Loow YL, Wu TY, Tan KA et al (2015) Recent advances in the application of Inorganic Salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63:8349–8363. https://doi.org/10.1021/acs.jafc.5b01813

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Zhang WJ, Yang JY et al (2022) Efficient fractionation of woody biomass hemicelluloses using cholinium amino acids-based deep eutectic solvents and their aqueous mixtures. Bioresour Technol 354:127139. https://doi.org/10.1016/j.biortech.2022.127139

    Article  CAS  PubMed  Google Scholar 

  77. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  78. Zhu Y, Qi B, Liang X et al (2021) Comparison of Corn Stover Pretreatments with Lewis Acid Catalyzed Choline Chloride, glycerol and choline chloride-glycerol Deep Eutectic Solvent. Polym (Basel) 13. https://doi.org/10.3390/polym13071170

  79. Chen Z, Bai X, L A, et al (2020) Insights into structural changes of lignin toward tailored properties during Deep Eutectic Solvent pretreatment. ACS Sustainable Chem Eng 8:9783–9793. https://doi.org/10.1021/acssuschemeng.0c01361

    Article  CAS  Google Scholar 

  80. da Costa Lopes AM, Gomes JRB, Coutinho JAP et al (2020) Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chem 22:2474–2487. https://doi.org/10.1039/c9gc02569c

    Article  CAS  Google Scholar 

  81. Zulkefli S, Abdulmalek E, Abdul Rahman MB (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy 107:36–41. https://doi.org/10.1016/j.renene.2017.01.037

    Article  CAS  Google Scholar 

  82. Loow Y-L, New EK, Yang GH et al (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24:3591–3618. https://doi.org/10.1007/s10570-017-1358-y

    Article  CAS  Google Scholar 

  83. García G, Aparicio S, Ullah R et al (2015) Deep Eutectic solvents: Physicochemical Properties and gas separation applications. Energy Fuels 29:2616–2644. https://doi.org/10.1021/ef5028873

    Article  CAS  Google Scholar 

  84. Soares B, Tavares DJP, Amaral JL et al (2017) Enhanced solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous solutions of Deep Eutectic solvents. ACS Sustainable Chem Eng 5:4056–4065. https://doi.org/10.1021/acssuschemeng.7b00053

    Article  CAS  Google Scholar 

  85. Yiin CL, Quitain AT, Yusup S et al (2016) Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour Technol 199:258–264. https://doi.org/10.1016/j.biortech.2015.07.103

    Article  CAS  PubMed  Google Scholar 

  86. Motte J-C, Sambusiti C, Dumas C et al (2015) Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: an innovative strategy for biofuels and volatile fatty acids recovery. Appl Energy 147:67–73. https://doi.org/10.1016/j.apenergy.2015.02.042

    Article  ADS  CAS  Google Scholar 

  87. Meraj A, Singh SP, Jawaid M et al (2023) A review on eco-friendly isolation of Lignin by Natural Deep Eutectic solvents from Agricultural Wastes. J Polym Environ 31:3283–3316. https://doi.org/10.1007/s10924-023-02817-x

    Article  CAS  Google Scholar 

  88. Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing Biogas production. Chem Eng Technol 34:391–399. https://doi.org/10.1002/ceat.201000357

    Article  CAS  Google Scholar 

  89. Shikov AN, Kosman VM, Flissyuk EV et al (2020) Natural deep Eutectic solvents for the extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L. Molecules 25 https://doi.org/10.3390/molecules25081826

  90. Lee KM, Hong JY, Tey WY (2021) Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification. Cellulose 28:1513–1526. https://doi.org/10.1007/s10570-020-03598-5

    Article  CAS  Google Scholar 

  91. Teh CY, Wu TY, Juan JC (2017) An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem Eng J 317:586–612. https://doi.org/10.1016/j.cej.2017.01.001

    Article  CAS  Google Scholar 

  92. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic Assessment of Microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985. https://doi.org/10.1021/ie9016557

    Article  CAS  Google Scholar 

  93. Kunaver M, Jasiukaityte E, Cuk N (2012) Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour Technol 103:360–366. https://doi.org/10.1016/j.biortech.2011.09.051

    Article  CAS  PubMed  Google Scholar 

  94. Karimi M, Jenkins B, Stroeve P (2014) Ultrasound irradiation in the production of ethanol from biomass. Renew Sustain Energy Rev 40:400–421. https://doi.org/10.1016/j.rser.2014.07.151

    Article  CAS  Google Scholar 

  95. Wang B, Meng T, Ma H et al (2016) Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized alcalase. Ultrason Sonochem 32:307–313. https://doi.org/10.1016/j.ultsonch.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  96. Liew SQ, Ngoh GC, Yusoff R et al (2016) Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. Int J Biol Macromol 93:426–435. https://doi.org/10.1016/j.ijbiomac.2016.08.065

    Article  CAS  PubMed  Google Scholar 

  97. Maiti S, Gallastegui G, Suresh G et al (2018) Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: an alternate approach. Bioresour Technol 265:471–479. https://doi.org/10.1016/j.biortech.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  98. Sweygers N, Alewaters N, Dewil R et al (2018) Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. Sci Rep 8:7719. https://doi.org/10.1038/s41598-018-26107-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Calcio Gaudino E, Tabasso S, Grillo G et al (2018) Wheat straw lignin extraction with bio-based solvents using enabling technologies. C R Chim 21:563–571. https://doi.org/10.1016/j.crci.2018.01.010

    Article  CAS  Google Scholar 

  100. Muley PD, Mobley JK, Tong X et al (2019) Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Convers Manage 196:1080–1088. https://doi.org/10.1016/j.enconman.2019.06.070

    Article  CAS  Google Scholar 

  101. Ahmed B, Gwon J, Thapaliya M et al (2023) Combined effects of deep eutectic solvent and microwave energy treatments on cellulose fiber extraction from hemp bast. Cellulose 30:2895–2911. https://doi.org/10.1007/s10570-023-05081-3

    Article  CAS  Google Scholar 

  102. Muley PD, Boldor D (2013) Investigation of microwave dielectric properties of biodiesel components. Bioresour Technol 127:165–174. https://doi.org/10.1016/j.biortech.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  103. Chen H, Wang A, C Yan, et al (2023) Study on the solubility of Industrial Lignin in Choline Chloride-based deep Eutectic solvents. Sustainability 15 https://doi.org/10.3390/su15097118

  104. Li X, Shen J, Wang B et al (2021) Acetone/Water Cosolvent Approach to Lignin nanoparticles with controllable size and their applications for Pickering Emulsions. ACS Sustainable Chem Eng 9:5470–5480. https://doi.org/10.1021/acssuschemeng.1c01021

    Article  CAS  Google Scholar 

  105. Ni Y, Q, Hu (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57:1441–1446. https://doi.org/10.1002/app.1995.070571203

    Article  CAS  Google Scholar 

  106. Ci Y-h, Yu F, Zhou C-x et al (2020) New ternary deep eutectic solvents for effective wheat straw deconstruction into its high-value utilization under near-neutral conditions. Green Chem 22:8713–8720. https://doi.org/10.1039/d0gc03240a

    Article  CAS  Google Scholar 

  107. Sun Y-Q, Yuan Y, Dai K-X et al (2023) The pretreatment of the sustainable biomass feedstock of Pennisetum giganteum for biorefinery using deep eutectic solvents. Bioresour Technol 384. https://doi.org/10.1016/j.biortech.2023.129289

  108. Tang X, Zuo M, Li Z et al (2017) Green Processing of Lignocellulosic Biomass and its derivatives in Deep Eutectic solvents. Chemsuschem 10:2696–2706. https://doi.org/10.1002/cssc.201700457

    Article  CAS  PubMed  Google Scholar 

  109. Hidayati S, Satyajaya W, Fudholi A (2020) Lignin isolation from black liquor from oil palm empty fruit bunch using acid. J Mater Res Technol 9:11382–11391. https://doi.org/10.1016/j.jmrt.2020.08.023

    Article  CAS  Google Scholar 

  110. Vainio U, Maximova N, Hortling B et al (2004) Morphology of dry lignins and size and Shape of Dissolved Kraft Lignin Particles by X-ray scattering. Langmuir 20:9736–9744. https://doi.org/10.1021/la048407v

    Article  CAS  PubMed  Google Scholar 

  111. Šurina I, Jablonský M, Ház A et al (2015) Characterization of non-wood lignin precipitated with sulphuric acid of various concentrations. BioResources 10. https://doi.org/10.15376/biores.10.1.1408-1423

  112. Xu J, Zhou P, Liu X et al (2021) Tandem Character of Liquid Hot Water and Deep Eutectic Solvent to Enhance Lignocellulose Deconstruction. Chemsuschem 14:2740–2748. https://doi.org/10.1002/cssc.202100765

    Article  CAS  PubMed  Google Scholar 

  113. Smink D, Kersten SRA, Schuur B (2020) Comparing multistage liquid–liquid extraction with cold water precipitation for improvement of lignin recovery from deep eutectic solvents. Sep Purif Technol 252. https://doi.org/10.1016/j.seppur.2020.117395

  114. Smink D, Kersten SRA, Schuur B (2020) Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep Purif Technol 235. https://doi.org/10.1016/j.seppur.2019.116127

  115. Chen L, Dou J, Ma Q et al (2017) Rapid and near-complete dissolution of wood lignin at =80 degrees C by a recyclable acid hydrotrope</at. Sci Adv 3:e1701735. https://doi.org/10.1126/sciadv.1701735

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang L, Li X, Jiang J et al (2022) Revealing structural and functional specificity of lignin from Tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization. Ind Crops Prod 180. https://doi.org/10.1016/j.indcrop.2022.114696

  117. Shuai L, Amiri MT, Questell-Santiago YM et al (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354:329–333. https://doi.org/10.1126/science.aaf7810

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Wang B, Sun D, Wang H-M et al (2018) Green and Facile Preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustainable Chem Eng 7:2658–2666. https://doi.org/10.1021/acssuschemeng.8b05735

    Article  CAS  Google Scholar 

  119. Wang L, Zhang R, Li J et al (2018) Comparative study of the fast pyrolysis behavior of ginkgo, poplar, and wheat straw lignin at different temperatures. Ind Crops Prod 122:465–472. https://doi.org/10.1016/j.indcrop.2018.06.038

    Article  CAS  Google Scholar 

  120. Zhu Y, Yang TX, Qi BK et al (2023) Acidic and alkaline deep eutectic solvents (DESs) pretreatment of grapevine: component analysis, characterization, lignin structural analysis, and antioxidant properties. Int J Biol Macromol 236:123977. https://doi.org/10.1016/j.ijbiomac.2023.123977

    Article  CAS  PubMed  Google Scholar 

  121. Li P, Lu Y, Li X et al (2022) Comparison of the degradation performance of seven different choline chloride-based DES systems on Alkaline Lignin. Polym (Basel) 14. https://doi.org/10.3390/polym14235100

  122. Du X, Li J, Lindström ME (2014) Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Ind Crops Prod 52:729–735. https://doi.org/10.1016/j.indcrop.2013.11.035

    Article  CAS  Google Scholar 

  123. Wang H-M, Wang B, Wen J-L et al (2017) Structural Characteristics of Lignin Macromolecules from different Eucalyptus species. ACS Sustainable Chem Eng 5:11618–11627. https://doi.org/10.1021/acssuschemeng.7b02970

    Article  CAS  Google Scholar 

  124. Paananen H, Eronen E, Mäkinen M et al (2020) Base-catalyzed oxidative depolymerization of softwood kraft lignin. Ind Crops Prod 152. https://doi.org/10.1016/j.indcrop.2020.112473

  125. Shen X, Zhang C, Han B et al (2022) Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem Soc Rev 51:1608–1628. https://doi.org/10.1039/d1cs00908g

    Article  CAS  PubMed  Google Scholar 

  126. Karthauser J, Biziks V, Frauendorf H et al (2022) Vacuum low-temperature microwave-assisted pyrolysis of Technical Lignins. Polym (Basel) 14. https://doi.org/10.3390/polym14163383

  127. Radhika NL, Sachdeva S, Kumar M (2021) Microbe assisted depolymerization of lignin rich waste and its conversion to gaseous biofuel. J Environ Manage 300:113684. https://doi.org/10.1016/j.jenvman.2021.113684

    Article  CAS  PubMed  Google Scholar 

  128. Xu Z, Lei P, Zhai R et al (2019) Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels 12:32. https://doi.org/10.1186/s13068-019-1376-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Di Marino D, Stöckmann D, Kriescher S et al (2016) Electrochemical depolymerisation of lignin in a deep eutectic solvent. Green Chem 18:6021–6028. https://doi.org/10.1039/c6gc01353h

    Article  Google Scholar 

  130. Di Marino D, Aniko V, Stocco A et al (2017) Emulsion electro-oxidation of kraft lignin. Green Chem 19:4778–4784. https://doi.org/10.1039/c7gc02115a

    Article  CAS  Google Scholar 

  131. Zhang W, Shen J, Gao P et al (2022) Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocoll 129. https://doi.org/10.1016/j.foodhyd.2022.107656

  132. Wang S, Su S, Xiao L-P et al (2020) Catechyl Lignin extracted from Castor seed Coats using deep Eutectic solvents: characterization and depolymerization. ACS Sustainable Chem Eng 8:7031–7038. https://doi.org/10.1021/acssuschemeng.0c00462

    Article  CAS  Google Scholar 

  133. Yu Q, Wang Y, Chen X et al (2021) Deep eutectic solvent assists Bacillus australimaris to transform alkali lignin waste into small aromatic compounds. J Clean Prod 320. https://doi.org/10.1016/j.jclepro.2021.128719

  134. Zdanowicz M, Sałasińska K, Lewandowski K et al (2022) Thermoplastic Starch/Ternary Deep Eutectic Solvent/Lignin Materials: study of Physicochemical Properties and Fire Behavior. ACS Sustainable Chem Eng 10:4579–4587. https://doi.org/10.1021/acssuschemeng.1c08542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Jilin Scientific and Technological Development Program (20220203095SF), the National Natural Science Foundation of China (32130073, 31971616).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Xixin Duan or Junyou Shi.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethics approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Cao, K., Yan, F. et al. Alkaline deep eutectic solvent for separation and extraction of lignin from lignocellulose biomass. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-023-05108-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05108-6

Keywords

Navigation