Skip to main content

Advertisement

Log in

Benchmarking the Production of Cellulose Nanofibres: Biomass Feedstock, Mechanical Processing, and Nanopaper Performance

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass plays a vital role in the global shift away from the utilisation of non-renewable petrochemical resources. An emerging class of biomass-derived material is nanocellulose, which are typically generated from the deconstruction of cellulose bundles within the cell wall of terrestrial and aquatic plants, either in the form of cellulose nanocrystals (CNCs) or cellulose nanofibres (CNFs). However, the utilisation of biomass has an inherent challenge associated with product variability, both in terms of the starting feedstock properties, the wide range of processing routes available to generate nanocellulose, and the fabrication of nanocellulose into a diverse range of different product formats. As a result, it is difficult to accurately characterise and benchmark the wide variety of nanocellulose materials described within the literature. To address this challenge, this study presents a threefold benchmarking assessment of CNF-based material, including: (1) CNFs generated from different biomass sources (sorghum, banana, sugarcane, spinifex, and softwood); (2) CNFs generated through different mechanical processing methods (Silverson mixing, twin-screw extrusion, bead milling, and high pressure homogenisation); and (3) Energy-standardised nanopaper mechanical performance presented within applicable literature studies. The biomass benchmarking study highlighted sorghum and banana stem as comparatively sustainable biomass feedstock, while the mechanical process benchmarking study highlighted twin-screw extrusion as a promising fibrillation method with relatively low energy consumption. Lastly, the nanopaper benchmarking study aided in the visualisation of the nanopaper research landscape. Overall, sample benchmarking in this manner provides greater insight into the mechanisms driving nanocellulose material performance and processing sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CNF:

Cellulose nanofibre

CNC:

Cellulose nanocrystal

MFC:

Microfibrillated cellulose

DL:

Delignification

HPH:

High pressure homogenisation

PCA:

Principal component analysis

XRD:

X-ray diffraction

CrI:

Crystallinity index

TGA:

Thermogravimetric analysis

TI:

Tensile index

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

BEK:

Bleached eucalyptus kraft

PMS:

Paper mill sludge

BSG:

Brewer’s spent grain

References

  1. Pennells J, Godwin ID, Amiralian N, Martin DJ (2020) Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27:575–593. https://doi.org/10.1007/s10570-019-02828-9

    Article  CAS  Google Scholar 

  2. Dhali K, Ghasemlou M, Daver F et al (2021) A review of nanocellulose as a new material towards environmental sustainability. Sci Total Environ 775:145871. https://doi.org/10.1016/j.scitotenv.2021.145871

    Article  CAS  PubMed  Google Scholar 

  3. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  4. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  5. Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  6. Kargarzadeh H, Mariano M, Gopakumar D et al (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189. https://doi.org/10.1007/s10570-018-1723-5

    Article  CAS  Google Scholar 

  7. Thomas B, Raj MC, Athira BK et al (2018) Nanocellulose, a Versatile Green Platform: from biosources to materials and their applications. Chem Rev 118:11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627

    Article  CAS  PubMed  Google Scholar 

  8. Pennells J, Heuberger B, Chaléat C, Martin DJ (2022) Assessing cellulose micro/nanofibre morphology using a high throughput fibre analysis device to predict nanopaper performance. Cellulose. https://doi.org/10.1007/s10570-021-04405-5

    Article  Google Scholar 

  9. Balea A, Blanco A, Delgado-Aguilar M et al (2021) Nanocellulose characterization challenges. BioResources 16:4382–4410. https://doi.org/10.15376/biores.16.2.Balea

    Article  Google Scholar 

  10. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. https://doi.org/10.1007/s10570-016-0881-6

    Article  CAS  Google Scholar 

  11. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765

    Article  CAS  PubMed  Google Scholar 

  12. Kim KS, Knotts TL, Jones SC (2008) Characterizing viability of small manufacturing enterprises (SME) in the market. Expert Syst Appl 34:128–134. https://doi.org/10.1016/j.eswa.2006.08.009

    Article  Google Scholar 

  13. Delepierre G, Vanderfleet OM, Niinivaara E et al (2021) Benchmarking cellulose nanocrystals part II: new industrially produced materials. Langmuir 37:8393–8409. https://doi.org/10.1021/acs.langmuir.1c00550

    Article  CAS  PubMed  Google Scholar 

  14. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

    Article  CAS  PubMed  Google Scholar 

  15. Kriechbaum K, Munier P, Apostolopoulou-Kalkavoura V, Lavoine N (2018) Analysis of the porous architecture and properties of anisotropic nanocellulose foams—a novel approach to assess the quality of cellulose nanofibrils (CNFs). ACS Sustain Chem Eng 6:11959–11967. https://doi.org/10.1021/acssuschemeng.8b02278

    Article  CAS  Google Scholar 

  16. Li T, Chen C, Brozena AH et al (2021) Developing fibrillated cellulose as a sustainable technological material. Nature 590:47–56. https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  PubMed  Google Scholar 

  17. Sharma PR, Sharma SK, Lindström T, Hsiao BS (2020) Nanocellulose-enabled membranes for water purification: perspectives. Adv Sustain Syst 4:1–28. https://doi.org/10.1002/adsu.201900114

    Article  CAS  Google Scholar 

  18. Mariño MA, Cypriano D, Tasic L (2021) Agroindustry residues as a source for cellulose nanofibers production. J Braz Chem Soc 32:878–888. https://doi.org/10.21577/0103-5053.20200239

    Article  CAS  Google Scholar 

  19. Okahisa Y, Furukawa Y, Ishimoto K et al (2018) Comparison of cellulose nanofiber properties produced from different parts of the oil palm tree. Carbohydr Polym 198:313–319. https://doi.org/10.1016/j.carbpol.2018.06.089

    Article  CAS  PubMed  Google Scholar 

  20. Yue D, Qian X (2018) Isolation and rheological characterization of cellulose nanofibrils (CNFs) from coir fibers in comparison to wood and cotton. Polymers 10:320

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Biores Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  22. Hassan ML, Mathew AP, Hassan EA et al (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205. https://doi.org/10.1007/s00226-010-0373-z

    Article  CAS  Google Scholar 

  23. Yahya M, Chen YW, Lee HV, Hassan WHW (2018) Reuse of selected lignocellulosic and processed biomasses as sustainable sources for the fabrication of nanocellulose via Ni(II)-catalyzed hydrolysis approach: a comparative study. J Polym Environ 26:2825–2844. https://doi.org/10.1007/s10924-017-1167-2

    Article  CAS  Google Scholar 

  24. Deepa B, Abraham E, Cordeiro N et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090. https://doi.org/10.1007/s10570-015-0554-x

    Article  CAS  Google Scholar 

  25. Chaker A, Mutje P, Vilaseca F, Boufi S (2013) Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos 34:1999–2007. https://doi.org/10.1002/pc.22607

    Article  CAS  Google Scholar 

  26. Espinosa E, Sánchez R, Otero R et al (2017) A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int J Biol Macromol 103:990–999. https://doi.org/10.1016/j.ijbiomac.2017.05.156

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Chen, F, Hu Y. (2021). Extraction of cellulose nanofibrils with ultraviolet blocking from agro-industrial wastes: a comparative study. Fibers Polym 22(1):59–68. https://doi.org/10.1007/s12221-021-0196-6

  28. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:631013. https://doi.org/10.1155/2014/631013

    Article  CAS  Google Scholar 

  29. Balea A, Merayo N, De La Fuente E et al (2017) Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Ind Crops Prod 97:374–387. https://doi.org/10.1016/j.indcrop.2016.12.050

    Article  CAS  Google Scholar 

  30. Delgado-Aguilar M, González I, Tarrés Q et al (2016) The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind Crops Prod 86:295–300. https://doi.org/10.1016/j.indcrop.2016.04.010

    Article  CAS  Google Scholar 

  31. Pennells J, Mellor V, Martin DJ (2022) Novel methodology to visualize biomass processing sustainability & cellulose nanofiber product quality. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.1c08476

    Article  Google Scholar 

  32. Ghasemi M, Alexandridis P, Tsianou M (2018) Dissolution of cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromol 19:640–651. https://doi.org/10.1021/acs.biomac.7b01745

    Article  CAS  Google Scholar 

  33. Sanchez-Salvador JL, Campano C, Balea A et al (2022) Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. Int J Biol Macromol 205:220–230. https://doi.org/10.1016/j.ijbiomac.2022.02.074

    Article  CAS  PubMed  Google Scholar 

  34. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  35. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123. https://doi.org/10.1007/s10570-015-0798-5

    Article  CAS  Google Scholar 

  36. Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  CAS  PubMed  Google Scholar 

  37. Baati R, Mabrouk AB, Magnin A, Boufi S (2018) CNFs from twin screw extrusion and high pressure homogenization: a comparative study. Carbohydr Polym 195:321–328. https://doi.org/10.1016/j.carbpol.2018.04.104

    Article  CAS  PubMed  Google Scholar 

  38. Kępa K, Chaléat CM, Amiralian N et al (2019) Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose 26:6555–6569. https://doi.org/10.1007/s10570-019-02567-x

    Article  CAS  Google Scholar 

  39. Khadraoui M, Khiari R, Bergaoui L, Mauret E (2022) Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2022.114991

    Article  Google Scholar 

  40. Yan M, Wu T, Ma J et al (2022) Characteristic comparison of lignocellulose nanofibrils from wheat straw having different mechanical pretreatments. J Appl Polym Sci. https://doi.org/10.1002/app.53054

    Article  Google Scholar 

  41. Djafari Petroudy SR, Chabot B, Loranger E et al (2021) Recent advances in cellulose nanofibers preparation through energy-efficient approaches: a review. Energies 14:6792. https://doi.org/10.3390/en14206792

    Article  CAS  Google Scholar 

  42. Yi T, Zhao H, Mo Q et al (2020) From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silva LE, dos Santos AA, Torres L et al (2021) Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117165

    Article  PubMed  Google Scholar 

  44. Mao R, Meng N, Tu W, Peijs T (2017) Toughening mechanisms in cellulose nanopaper: the contribution of amorphous regions. Cellulose 24:4627–4639. https://doi.org/10.1007/s10570-017-1453-0

    Article  CAS  Google Scholar 

  45. Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024. https://doi.org/10.1039/c7ta02006f

    Article  CAS  Google Scholar 

  46. International Organization for Standardization (2001) BS EN ISO 5269-2:2001-Pulps. Preparation of laboratory sheets for physical testing. Rapid-Kothen method

  47. Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  48. Josset S, Orsolini P, Siqueira G et al (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29:167–175. https://doi.org/10.3183/npprj-2014-29-01-p167-175

    Article  CAS  Google Scholar 

  49. Kargupta W, Seifert R, Martinez M et al (2021) Sustainable production process of mechanically prepared nanocellulose from hardwood and softwood: a comparative investigation of refining energy consumption at laboratory and pilot scale. Ind Crops Prod 171:113868. https://doi.org/10.1016/j.indcrop.2021.113868

    Article  CAS  Google Scholar 

  50. Ang S, Haritos V, Batchelor W (2019) Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 26:4767–4786. https://doi.org/10.1007/s10570-019-02400-5

    Article  CAS  Google Scholar 

  51. Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531. https://doi.org/10.1021/acssuschemeng.7b00630

    Article  CAS  Google Scholar 

  52. Berglund L, Noël M, Aitomäki Y et al (2016) Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind Crops Prod 92:84–92. https://doi.org/10.1016/j.indcrop.2016.08.003

    Article  CAS  Google Scholar 

  53. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238. https://doi.org/10.1016/j.indcrop.2012.03.018

    Article  CAS  Google Scholar 

  54. Du H, Parit M, Wu M et al (2020) Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123106

    Article  PubMed  Google Scholar 

  55. Yue Y, Zhou C, French AD et al (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187. https://doi.org/10.1007/s10570-012-9714-4

    Article  CAS  Google Scholar 

  56. Wang Z, McDonald AG, Westerhof RJM et al (2013) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrolysis 100:56–66. https://doi.org/10.1016/j.jaap.2012.11.017

    Article  CAS  Google Scholar 

  57. Kepa K (2021) Cellulose nanofibre and nanopaper: structure-property-processing relationship and green surface modification

  58. Maiti S, Jayaramudu J, Das K et al (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  59. Santucci BS, Bras J, Belgacem MN et al (2016) Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind Crops Prod 91:238–248. https://doi.org/10.1016/j.indcrop.2016.07.017

    Article  CAS  Google Scholar 

  60. Madsen B, Gamstedt EK (2013) Wood versus plant fibers: similarities and differences in composite applications. Adv Mater Sci Eng 2013:1–14. https://doi.org/10.1155/2013/564346

    Article  Google Scholar 

  61. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053. https://doi.org/10.1016/j.euromechsol.2005.05.006

    Article  Google Scholar 

  62. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177. https://doi.org/10.1016/j.carbpol.2012.04.069

    Article  CAS  PubMed  Google Scholar 

  63. Pennells J, Cruickshank A, Godwin ID, Martin DJ (2021) Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113917

    Article  Google Scholar 

  64. Guimarães JL, Frollini E, da Silva CG et al (2009) Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crops Prod 30:407–415. https://doi.org/10.1016/j.indcrop.2009.07.013

    Article  CAS  Google Scholar 

  65. Meng F, Zhang X, Yu W, Zhang Y (2019) Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols. Ind Crops Prod 137:377–385. https://doi.org/10.1016/j.indcrop.2019.05.025

    Article  CAS  Google Scholar 

  66. Mohamed GR, Mahmoud RK, Fahim IS et al (2021) Bio-composite thermal insulation materials based on banana leaves fibers and polystyrene: physical and thermal performance. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1870628

    Article  Google Scholar 

  67. Prager CM, Boelman NT, Eitel JUH et al (2020) A mechanism of expansion: arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 192:671–685. https://doi.org/10.1007/s00442-019-04586-8

    Article  PubMed  Google Scholar 

  68. Aguado R, Moral A, López P et al (2016) Morphological analysis of pulps from orange tree trimmings and its relation to mechanical properties. Meas: J Int Meas Confed 93:319–326. https://doi.org/10.1016/j.measurement.2016.06.063

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Australian Government for their provision of a Research Training Program (RTP) scholarship, the University of Queensland for their provision of a living allowance scholarship and continental scholarship, and the Grains Research and Development Corporation (GRDC) for their support of this research through the provision of their GRDC Research Scholarship (GRS). We acknowledge Sunshine Coast banana farmer Ray Nelson for his contribution of banana biomass, and A/Prof Zhanying Zhang from Queensland University of Technology (QUT) for his contribution of sugarcane bagasse for this study. The authors also acknowledge the contribution of Dugalunji Aboriginal Corporation (DAC) on behalf of the Indjalandji-Dhidhanu peoples through use of their equipment and in-kind support.

Funding

This research was supported by the Australian Government Grains Research and Development Corporation (GRDC) Research Scholarship (Ref: UOQ1903-005RSX). The funding source had no involvement in the preparation, writing or submission of this article.

Author information

Authors and Affiliations

Authors

Contributions

JP: Conceptualization, Methodology, Software, Investigation, Writing—Original Draft, Writing—Reviewing and Editing, Visualization, Project administration, Funding acquisition. CC: Resources, Supervision. DM: Supervision, Funding acquisition, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Jordan Pennells.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennells, J., Chaléat, C. & Martin, D.J. Benchmarking the Production of Cellulose Nanofibres: Biomass Feedstock, Mechanical Processing, and Nanopaper Performance. J Polym Environ 31, 1760–1786 (2023). https://doi.org/10.1007/s10924-022-02672-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02672-2

Keywords

Navigation