Skip to main content

Advertisement

Log in

Reuse of Selected Lignocellulosic and Processed Biomasses as Sustainable Sources for the Fabrication of Nanocellulose via Ni(II)-Catalyzed Hydrolysis Approach: A Comparative Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigates for the first time the feasibility of isolating nanocellulose from several selected feedstocks via a novel Ni(II)-hydrolysis process, including lignocellulosic biomasses (oil palm trunk, banana peel and coconut husk) and processed biomasses (newspaper, tissue paper and cotton linter), with an obtained gravimetric yield ranging from 59.6 to 86.2%. The isolation of nanocellulose products from these selected feedstocks was verified by the successive removal of most of their non-cellulosic components (lignin and hemicellulose) and cellulose amorphous regions, the increase in the crystallinity index and the nanoscale of the individual crystals. Most importantly, the resultant nanocellulose products rendered better thermal stability than that of corresponding original sources, which are highly potential to be utilized as the new renewable sources of reinforcement materials with potential applications in bio-nanocomposites and thermoplastics. Therefore, this work proves the viability of direct production of nanocellulose from a variety of cellulosic sources by using Ni(II)-based transition metal salt catalyst. The results suggested that the concept of waste to wealth could be well executed from the obtained nanocellulose, which are greatly potential for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flauzino Neto WP et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  2. Klemm D et al (2011) Nanocellulose: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  3. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  4. Adewuyi YG, Deshmane VG (2015) Intensification of enzymatic hydrolysis of cellulose using high-frequency ultrasound: an investigation of the effects of process parameters on glucose yield. Energy Fuels 29(8):4998–5006

    Article  CAS  Google Scholar 

  5. Hamid SBA et al (2016) Catalytic isolation and physicochemical properties of nanocrystalline cellulose (NCC) using HCl-FeCl3 system combined with ultrasonication. BioResources 11(2):3840–3855

    Google Scholar 

  6. Fortunati E et al (2012) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328

    Article  CAS  Google Scholar 

  7. Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    Article  CAS  Google Scholar 

  8. Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616

    Article  CAS  PubMed  Google Scholar 

  9. Guo J et al (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255

    Article  CAS  PubMed  Google Scholar 

  10. Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  CAS  Google Scholar 

  11. Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798

    Article  CAS  Google Scholar 

  12. Tan BK et al (2015) Biodegradable mulches based on poly (vinyl alcohol), kenaf fiber, and urea. BioResources 10(3):5532–5543

    Article  CAS  Google Scholar 

  13. Shuit SH et al (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235

    Article  CAS  Google Scholar 

  14. Trache D et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  PubMed  Google Scholar 

  15. Bettaieb F et al (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidoniaoceanica. Ind Crops Prod 72:175–182

    Article  CAS  Google Scholar 

  16. Chen YW et al (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219

    Article  CAS  PubMed  Google Scholar 

  17. Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090

    Article  CAS  Google Scholar 

  18. Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal 2014

  19. Mora-Pale M et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245

    Article  CAS  PubMed  Google Scholar 

  20. Sofla MRK et al (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7(3):035004

    Google Scholar 

  21. Man Z et al (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19(3):726–731

    Article  CAS  Google Scholar 

  22. Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843

    Article  CAS  Google Scholar 

  23. Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149

    Article  CAS  PubMed  Google Scholar 

  24. Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  25. Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208

    Article  CAS  PubMed  Google Scholar 

  26. Wobiwo FA et al (2017) Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Convers Biorefin 7(2):167–177

    Article  CAS  Google Scholar 

  27. Cabral MMS et al (2016) Bioethanol production from coconut husk fiber. Ciênc Rural 46(10):1872–1877

    Article  Google Scholar 

  28. Subhedar PB, Babu NR, Gogate PR (2015) Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production. Ultrason Sonochem 22:326–332

    Article  CAS  PubMed  Google Scholar 

  29. Campano C et al (2017) Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr Polym 173:489–496

    Article  CAS  PubMed  Google Scholar 

  30. Hubbe MA et al (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. BioResources 8(4):6556–6629

    Google Scholar 

  31. Morais JP et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    Article  CAS  PubMed  Google Scholar 

  32. Nepomuceno NC et al (2017) Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines. Cellulose 24(1):119–129

    Article  CAS  Google Scholar 

  33. Cui S et al (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352

    Article  CAS  Google Scholar 

  34. Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23(3):1803–1812

    Article  CAS  Google Scholar 

  35. Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1

    Article  CAS  Google Scholar 

  36. Correa AC et al (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192

    Article  CAS  Google Scholar 

  37. Pickering KL et al (2007) Optimising industrial hemp fibre for composites. Compos Part A: Appl Sci Manuf 38(2):461–468

    Article  CAS  Google Scholar 

  38. Yahya MB, Lee HV, Hamid SBA (2015) Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway. BioResources 10(4):7627–7639

    Article  CAS  Google Scholar 

  39. Chen YW, Lee HV, Abd Hamid SB (2016) Preparation and characterization of cellulose crystallites via Fe(III)-, Co(II)-and Ni(II)-assisted dilute sulfuric acid catalyzed hydrolysis process. J Nano Res 41:96–109

    Article  CAS  Google Scholar 

  40. Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92

    Article  CAS  Google Scholar 

  41. Son HN, Seo YB (2015) Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose 22(3):1789–1798

    Article  CAS  Google Scholar 

  42. Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503

    Article  CAS  PubMed  Google Scholar 

  43. Maiti S et al (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98(1):562–567

    Article  CAS  PubMed  Google Scholar 

  44. Yahya M et al (2015) Chemical conversion of palm-based lignocellulosic biomass to nano-cellulose. Polym Res J 9(4):385

    CAS  Google Scholar 

  45. Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Clean Prod 142:1283–1295

    Article  CAS  Google Scholar 

  46. Brígida AIS et al (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79(4):832–838

    Article  CAS  Google Scholar 

  47. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Sci Technol 59(2):1311–1318

    Article  CAS  Google Scholar 

  48. Chen W et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442

    Article  CAS  Google Scholar 

  49. Chen YW, Lee HV, Abd Hamid SB (2017) Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydr Polym 157:1511–1524

    Article  CAS  PubMed  Google Scholar 

  50. Mondragon G et al (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148

    Article  CAS  Google Scholar 

  51. Jahan MS et al (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459

    Article  CAS  Google Scholar 

  52. Guo X et al (2015) Production of recycled cellulose fibers from waste paper via ultrasonic wave processing. J Appl Polym Sci 132(19):41962

  53. Diop CIK, Lavoie J-M (2016) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled tetra pak aseptic multilayered food packaging wastes. Waste Biomass Valorization 8:1–16

    Google Scholar 

  54. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  55. Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789

    Article  CAS  Google Scholar 

  56. Chen YW, Lee HV, Hamid SBA (2016) A response surface methodology study: effects of trivalent Cr3+ metal ion-catalyzed hydrolysis on nanocellulose crystallinity and yield. BioResources 11(2):4645–4662

    CAS  Google Scholar 

  57. Chen YW, Lee HV, Hamid SBA (2016) Preparation of nanostructured cellulose via Cr(III)- and Mn(II)-transition metal salt catalyzed acid hydrolysis approach. BioResources 11(3):7224–7241

    CAS  Google Scholar 

  58. Chen YW et al (2017) Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(NO3)3 catalytic hydrolysis system: a feasibility study from macro- to nano-dimensions. Materials 10(1):42

    Article  CAS  PubMed Central  Google Scholar 

  59. Al-Dulaimi AA, Wanrosli WD (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25(2):192–202

  60. Yang H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  61. Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166

    Article  CAS  Google Scholar 

  62. Chirayil CJ et al (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34

    Article  CAS  Google Scholar 

  63. Zaini LH (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 04(01):37–44

    Article  CAS  Google Scholar 

  64. Goh KY et al (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23(1):379–390

    Article  CAS  Google Scholar 

  65. Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944

    Article  CAS  Google Scholar 

  66. Roman M, Winter W (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  PubMed  Google Scholar 

  67. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99

    Article  CAS  Google Scholar 

  68. Chen YW, Lee HV (2018) Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int J Biol Macromol 107:78–92

  69. Chen YW, Lee HV, Abd SB, Hamid (2017) Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: response surface methodology. Carbohydr Polym 178:(Supplement C):57–68

    Article  CAS  PubMed  Google Scholar 

  70. Alila S et al (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  71. Han J et al (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14(5):1529–1540

    Article  CAS  Google Scholar 

  72. Liu C et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724

    Article  CAS  PubMed  Google Scholar 

  73. Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88(2):789–792

    Article  CAS  Google Scholar 

  74. Travalini A et al (2017) Extraction and characterization of nanocrystalline cellulose from cassava bagasse. J Polym Environ 1–9

  75. Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952

    Article  CAS  PubMed  Google Scholar 

  76. Sun X et al (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2):1123–1133

    Article  CAS  Google Scholar 

  77. Arrieta MP et al (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    Article  CAS  Google Scholar 

  78. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23(6):871–893

    Article  CAS  Google Scholar 

  79. Cheng M et al (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5(6):4656–4664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from SATU Joint Research Scheme (ST015-2017) and University of Malaya, Postgraduate Research Grant Scheme PPP (PG063-2015A, PG079-2014B). We are also acknowledged for cordial support from Malaysian Palm Oil Board (MPOB). The authors would like to gratefully acknowledge the expert guidance and support from late Professor Sharifah Bee Abd Hamid throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwei Voon Lee.

Additional information

Mazlita Yahya and You Wei Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, M., Chen, Y.W., Lee, H.V. et al. Reuse of Selected Lignocellulosic and Processed Biomasses as Sustainable Sources for the Fabrication of Nanocellulose via Ni(II)-Catalyzed Hydrolysis Approach: A Comparative Study. J Polym Environ 26, 2825–2844 (2018). https://doi.org/10.1007/s10924-017-1167-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1167-2

Keywords

Navigation