Skip to main content
Log in

Cetrimide Crosslinked Chitosan/Guar Gum/Gum Ghatti Active Biobased Films for Food Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan/Guar Gum/Gum Ghatti (CS/GG/GGh) active biobased films were fabricated by employing cetrimide as crosslinking and antimicrobial agent in presence of polyethylene glycol as plasticizer through solvent casting technique. The effect of various concentrations (0.05 0.1. 0.15 and 0.2%) of cetrimide on the physico-chemical and functional properties of plasticized CS/GG/GGh active biobased films were studied. FTIR analysis confirmed the interactions of cetrimide with polymer chains. The incorporation of cetrimide significantly improved the mechanical, thermal and barrier properties. Crosslinking of cetrimide significantly reduced the moisture adsorption, water solubility, hydrophilic surface and also improved the poor water vapor barrier properties usually associated to polysaccharide-based films. Active biobased films were extremely sensitive against Staphylococcus aureus, Escherichia coli and Candida albicans. Overall migration of constituents of films was well below the overall migration limit of 10 mg/dm2. The developed biobased films are environmental friendly with new features that can potentially serve as a food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma K, Kumar V, Kaith B, Som S, Kumar V, Pandey A, Kalia S, Swart H (2015) Synthesis of biodegradable gum ghatti based poly (methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54(7):1982–1991. https://doi.org/10.1021/ie5044743

    Article  CAS  Google Scholar 

  2. Baldwin EA, Hagenmaier R, Bai J (2011) Edible coatings and films to improve food quality. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Cao X, Zhang L, Huang J, Yang G, Wang Y (2003) Structure–properties relationship of starch/waterborne polyurethane composites. J Appl Polym Sci 90(12):3325–3332. https://doi.org/10.1002/app.13079

    Article  CAS  Google Scholar 

  4. Zeng M, Zhang L, Wang N, Zhu Z (2003) Miscibility and properties of blend membranes of waterborne polyurethane and carboxymethylchitin. J Appl Polym Sci 90(5):1233–1241. https://doi.org/10.1002/app.12660

    Article  CAS  Google Scholar 

  5. Lu Y, Tighzert L, Dole P, Erre D (2005) Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46(23):9863–9870. https://doi.org/10.1016/j.polymer.2005.08.026

    Article  CAS  Google Scholar 

  6. Fernandes SC, Freire CS, Silvestre AJ, PascoalNeto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60(6):875–882. https://doi.org/10.1002/pi.3024

    Article  CAS  Google Scholar 

  7. Saikia C, Gogoi P, Maji T (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S. https://doi.org/10.4172/1747-0862.S4-006

    Article  Google Scholar 

  8. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  Google Scholar 

  9. Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433. https://doi.org/10.1080/10408390600846366

    Article  CAS  Google Scholar 

  10. Fernandes P, Goncalves M, Doublier J (1993) Influence of locust bean gum on the rheological properties of kappa-carrageenan systems in the vicinity of the gel point. Carbohyd Polym 22(2):99–106. https://doi.org/10.1016/0144-8617(93)90072-C

    Article  CAS  Google Scholar 

  11. Leimann FV, Gonçalves OH, Sakanaka LS, Azevedo AS, Lima MV, Barreiro F, Shirai MA (2018) Active food packaging from botanical, animal, bacterial, and synthetic sources. In: Grumezescu AM, Holban AM (eds) Food packaging and preservation. Academic Press, Cambridge, pp 87–135. https://doi.org/10.1016/B978-0-12-811516-9.00003-8

    Chapter  Google Scholar 

  12. Rao M, Kanatt S, Chawla S, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohyd Polym 82(4):1243–1247. https://doi.org/10.1016/j.carbpol.2010.06.058

    Article  CAS  Google Scholar 

  13. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a review. J Food Sci Technol 51(3):409–418. https://doi.org/10.1007/s13197-011-0522-x

    Article  CAS  Google Scholar 

  14. Patel JJ, Karve M, Patel NK (2014) Guar gum: a versatile material for pharmaceutical industries. Int J Pharm PharmSci 6(8):13–19

    CAS  Google Scholar 

  15. Deshmukh AS, Setty CM, Badiger AM, Muralikrishna K (2012) Gum ghatti: a promising polysaccharide for pharmaceutical applications. Carbohydr Polym 87(2):980–986. https://doi.org/10.1016/j.carbpol.2011.08.099

    Article  CAS  Google Scholar 

  16. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124(3):2037–2047. https://doi.org/10.1002/app.35238

    Article  CAS  Google Scholar 

  17. Saberi B, Thakur R, Bhuyan DJ, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2017) Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch-Stärke 69(1–2):1600227. https://doi.org/10.1002/star.201600227

    Article  CAS  Google Scholar 

  18. Tang Y, Zhang X, Zhao R, Guo D, Zhang J (2018) Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym 197:128–136. https://doi.org/10.1016/j.carbpol.2018.05.073

    Article  CAS  Google Scholar 

  19. Banegas RS, Zornio ClF, de Adriana M, Borges G, Porto LC, Soldi V (2013) Preparation, characterization and properties of films obtained from cross-linked guar gum. Polímeros 23(2):182–188. https://doi.org/10.4322/polimeros.2013.082

    Article  CAS  Google Scholar 

  20. Saurabh CK, Gupta S, Bahadur J, Mazumder S, Variyar PS, Sharma A (2015) Mechanical and barrier properties of guar gum based nano-composite films. Carbohyd Polym 124:77–84. https://doi.org/10.1016/j.carbpol.2015.02.004

    Article  CAS  Google Scholar 

  21. Saurabh CK, Gupta S, Variyar PS, Sharma A (2016) Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind Crops Prod 89:109–118. https://doi.org/10.1016/j.indcrop.2016.05.003

    Article  CAS  Google Scholar 

  22. Hernandez-Izquierdo V, Krochta J (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39. https://doi.org/10.1111/j.1750-3841.2007.00636.x

    Article  CAS  Google Scholar 

  23. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Novel pH-sensitive hydrogels prepared from the blends of poly (vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind Eng Chem Res 49(16):7323–7329. https://doi.org/10.1021/ie100389v

    Article  CAS  Google Scholar 

  24. Arvanitoyannis IS (1999) Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J Macromol Sci Part C. https://doi.org/10.1081/MC-100101420

    Article  Google Scholar 

  25. Thimma RT, Tammishetti S (2001) Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery. J Appl Polym Sci 82(12):3084–3090. https://doi.org/10.1002/app.2164

    Article  CAS  Google Scholar 

  26. Balaguer MP, Gómez-Estaca J, Gavara R, Hernandez-Munoz P (2011) Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 59(12):6689–6695

    Article  CAS  Google Scholar 

  27. Bhattacharya A, Rawlins JW, Ray P (eds) (2008) Polymer grafting and crosslinking. Wiley, Hoboken

    Google Scholar 

  28. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  29. Ostrowska-Czubenko J, Gierszewska-Drużyńska M (2009) Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym 77(3):590–598

    Article  CAS  Google Scholar 

  30. Kavoosi G, Dadfar SMM, Mohammadi Purfard A, Mehrabi R (2013) Antioxidant and antibacterial properties of gelatin films incorporated with carvacrol. J Food Saf 33(4):423–432. https://doi.org/10.1111/jfs.12071

    Article  Google Scholar 

  31. De Dicastillo CL, Rodríguez F, Guarda A, Galotto MJ (2016) Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohyd Polym 136:1052–1060. https://doi.org/10.1016/j.carbpol.2015.10.013

    Article  CAS  Google Scholar 

  32. Velickova E, Winkelhausen E, Kuzmanova S, Moldao-Martins M, Alves VD (2015) Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci Technol Int 21(2):83–93

    Article  CAS  Google Scholar 

  33. Gliko-Kabir I, Yagen B, Penhasi A, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery: I. Preparation and physicochemical characterization. J Controll Release 63(1–2):121–127. https://doi.org/10.1016/S0168-3659(99)00179-0

    Article  CAS  Google Scholar 

  34. Saberi B, Thakur R, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2016) Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind Crops Prod 86:342–352. https://doi.org/10.1016/j.indcrop.2016.04.015

    Article  CAS  Google Scholar 

  35. Chudzikowski R (1971) Guar gum and its applications. J Soc Cosmet Chem 22(1):43

    CAS  Google Scholar 

  36. Chandrika KP, Singh A, Rathore A, Kumar A (2016) Novel cross linked guar gum-g-poly (acrylate) porous superabsorbent hydrogels: characterization and swelling behaviour in different environments. Carbohyd Polym 149:175–185. https://doi.org/10.1016/j.carbpol.2016.04.077

    Article  CAS  Google Scholar 

  37. Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromol 6(2):1149–1153. https://doi.org/10.1021/bm049528c

    Article  CAS  Google Scholar 

  38. Ito E, Yip KW, Katz D, Fonseca SB, Hedley DW, Chow S, Xu GW, Wood TE, Bastianutto C, Schimmer AD (2009) Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol Pharmacol 76(5):969–983. https://doi.org/10.1124/mol.109.055277

    Article  CAS  Google Scholar 

  39. Frayha GJ, Bikhazi KJ, Kachachi TA (1981) Treatment of hydatid cysts (Echinococcusgranulosus) by Cetrimide (R). Trans R Soc Trop Med Hyg 75(3):447–450. https://doi.org/10.1016/0035-9203(81)90118-8

    Article  CAS  Google Scholar 

  40. Agency EM (2001) The European Agency for the Evaluation of Medicinal Products,Veterinary Medicines Evaluation Unit.

  41. Baysal G, Çelik BY (2019) Synthesis and characterization of antibacterial bio-nano films for food packaging. J Environ Sci Health B 54(2):79–88. https://doi.org/10.1080/03601234.2018.1530546

    Article  CAS  Google Scholar 

  42. Samanta AK, Mukhopadhyay A, Bhagwat MM, Kar TR (2016) Application of polyethylene glycol, cetrimide, chitosan and their mixtures on cotton muslin fabric to improve rot resistance, antimicrobial property and its salt-free reactive dyeing. J Text Inst 107(11):1386–1405. https://doi.org/10.1080/00405000.2015.1114790

    Article  CAS  Google Scholar 

  43. Shanthi PMS, Mangalaraja R, Uthirakumar A, Velmathi S, Balasubramanian T, Ashok M (2010) Synthesis and characterization of porous shell-like nano hydroxyapatite using Cetrimide as template. J Colloid Interface Sci 350(1):39–43. https://doi.org/10.1016/j.jcis.2010.05.046

    Article  CAS  Google Scholar 

  44. Ruiz-Linares M, Bailón-Sánchez ME, Baca P, Valderrama M, Ferrer-Luque CM (2013) Physical properties of AH Plus with chlorhexidine and cetrimide. J Endod 39(12):1611–1614. https://doi.org/10.1016/j.joen.2013.08.002

    Article  Google Scholar 

  45. Sharma G, Sharma S, Kumar A, Ala’a H, Naushad M, Ghfar AA, Mola GT, Stadler FJ (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohyd Polym 199:534–545. https://doi.org/10.1016/j.carbpol.2018.07.053

    Article  CAS  Google Scholar 

  46. Jeon JG, Kim HC, Palem RR, Kim J, Kang TJ (2019) Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater Lett 250:99–102. https://doi.org/10.1016/j.matlet.2019.05.002

    Article  CAS  Google Scholar 

  47. Roy S, Shankar S, Rhim JW (2019) Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocoll 88:237–246. https://doi.org/10.1016/j.foodhyd.2018.10.013

    Article  CAS  Google Scholar 

  48. Roy S, Rhim J-W, Jaiswal L (2019) Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll 93:156–166. https://doi.org/10.1016/j.foodhyd.2019.02.034

    Article  CAS  Google Scholar 

  49. Shankar S, Rhim JW (2017) Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 71:76–84. https://doi.org/10.1016/j.foodhyd.2017.05.002

    Article  CAS  Google Scholar 

  50. Tock RW (1983) Permeabilities and water vapor transmission rates for commercial polymer films. Adv Polym Technol 3(3):223–231. https://doi.org/10.1002/adv.1983.060030304

    Article  CAS  Google Scholar 

  51. Jagadish R, Raj B, Asha M (2009) Blending of low-density polyethylene with vanillin for improved barrier and aroma-releasing properties in food packaging. J Appl Polym Sci 113(6):3732–3741. https://doi.org/10.1002/app.30221

    Article  CAS  Google Scholar 

  52. Kanatt SR, Rao M, Chawla S, Sharma A (2012) Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll 29(2):290–297. https://doi.org/10.1016/j.foodhyd.2012.03.005

    Article  CAS  Google Scholar 

  53. IS (1981). Methods of Analysis for the Determination of Specific or Overall Migration of Constituents of Plastics, Materials and Articles Intended to Come into Contact with Foodstuffs. gov.in.is.9845.1998

  54. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  55. Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Chitosan/oxidized pectin/PVA blend film: mechanical and biological properties. Polym Bull 74(10):4297–4310. https://doi.org/10.1007/s00289-017-1953-y

    Article  CAS  Google Scholar 

  56. Hassan A, Niazi MBK, Hussain A, Farrukh S, Ahmad T (2018) Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ 26(1):235–243. https://doi.org/10.1007/s10924-017-0944-2

    Article  CAS  Google Scholar 

  57. Shirajur Rahman Md, Minhajul Islam Md, Sazedul Islam Md, Asaduz Zaman, Tanvir Ahmed, Shanta Biswas, Sadia Sharmeen, Taslim Ur Rashid, Mohammed Mizanur Rahman (2019) Morphological characterization of hydrogels. In: Cellulose-based superabsorbent hydrogels. pp 819–863

  58. Ahmed J, Mulla MZ, Arfat YA (2016) Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control 69:196–204. https://doi.org/10.1016/j.foodcont.2016.05.013

    Article  CAS  Google Scholar 

  59. Erginkaya Z, Kalkan S, Ünal E (2014) Use of antimicrobial edible films and coatings as packaging materials for food safety. In: Malik A, Erginkaya Z, Ahmad S, Erten H (eds) Food processing: strategies for quality assessment. Springer, NewYork, pp 261–295

    Chapter  Google Scholar 

  60. Azeredo HM, Waldron KW (2016) Crosslinking in polysaccharide and protein films and coatings for food contact—A review. Trends Food Sci Technol 52:109–122

    Article  CAS  Google Scholar 

  61. Rithe SS, Kadam PG, Mhaske ST (2014) Preparation and analysis of novel hydrogels prepared from the blend of guar gum and chitosan: cross-linked with glutaraldehyde. Adv Mater Sci Eng 1(2):1–15

    Google Scholar 

  62. Hafsa J, aliSmach M, Khedher MRB, Charfeddine B, Limem K, Majdoub H, Rouatbi S (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT-Food Sci Technol 68:356–364. https://doi.org/10.1016/j.lwt.2015.12.050

    Article  CAS  Google Scholar 

  63. Sajjan AM, Naik ML, Kulkarni AS, Fazal-E-HabibaRudgi U, Ashwini M, Shirnalli GG, Sharanappa A, Kalahal PB (2020) Preparation and characterization of PVA-Ge/PEG-400 biodegradable plastic blend films for Packaging applications. Chem Data Collect. https://doi.org/10.1016/j.cdc.2020.100338

    Article  Google Scholar 

  64. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci. https://doi.org/10.1155/2012/302029

    Article  Google Scholar 

  65. Germain Y (1997) Conception de films polymère à perméabilitécontrôlée pour l’emballagealimentaire. Ind Alimentairesetagricoles 114(3):137–140

    CAS  Google Scholar 

  66. Abdelhedi O, Nasri R, Jridi M, Kchaou H, Nasreddine B, Karbowiak T, Debeaufort F, Nasri M (2018) Composite bioactive films based on smooth-hound viscera proteins and gelatin: physicochemical characterization and antioxidant properties. Food Hydrocoll 74:176–186. https://doi.org/10.1016/j.foodhyd.2017.08.006

    Article  CAS  Google Scholar 

  67. Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. https://doi.org/10.1016/j.foodchem.2015.09.065

    Article  CAS  Google Scholar 

  68. Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9(6):5477–5485. https://doi.org/10.1021/acsami.6b14471

    Article  CAS  Google Scholar 

  69. Russo G, Simon GP, Incarnato L (2006) Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films. Macromolecules 39(11):3855–3864. https://doi.org/10.1021/ma052178h

    Article  CAS  Google Scholar 

  70. Kouchak M, Ameri A, Naseri B, KargarBoldaji S (2014) Chitosan and polyvinyl alcohol composite films containing nitrofurazone; preparation and evaluation. Iran J Basic Med Sci 17:14–20

    CAS  Google Scholar 

  71. Bhattacharya M, Biswas S, Bhowmick AK (2011) Permeation characteristics andmodeling of barrier properties of multifunctional rubber nanocomposites. Polymer 52(7):1562–1576. https://doi.org/10.1016/j.polymer.2011.01.055

    Article  CAS  Google Scholar 

  72. Riaz A, Lagnika C, Abdin M, Hashim MM, Ahmed W (2020) Preparation and characterization of chitosan/gelatin-based active food packaging films containing apple peel nanoparticles. J Polym Environ 28(2):411–420. https://doi.org/10.1007/s10924-019-01619-4

    Article  CAS  Google Scholar 

  73. Aguirre-Joya JA, De Leon-Zapata MA, Alvarez-Perez OB, Torres-León C, Nieto-Oropeza DE, Ventura-Sobrevilla JM, Aguilar MA, Ruelas-Chacón X, Rojas R, Ramos-Aguiñaga ME (2018) Basic and applied concepts of edible packaging for foods. In: Grumezescu AM, Holban AM (eds) Food packaging and preservation. Elsevier, Amsterdam, pp 1–61. https://doi.org/10.1016/B978-0-12-811516-9.00001-4

    Chapter  Google Scholar 

  74. Kaur K, Jindal R, Maiti M, Mahajan S (2019) Studies on the properties and biodegradability of PVA/Trapanatans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. Int J Biol Macromol 123:826–836. https://doi.org/10.1016/j.ijbiomac.2018.11.134

    Article  CAS  Google Scholar 

  75. Wu Y, Ying Y, Liu Y, Zhang H, Huang J (2018) Preparation of chitosan/poly vinyl alcohol films and their inhibition of biofilm formation against Pseudomonas aeruginosa PAO1. Int J Biol Macromol 118:2131–2137. https://doi.org/10.1016/j.ijbiomac.2018.07.061

    Article  CAS  Google Scholar 

  76. FernandesQueiroz M, Melo K, Sabry D, Sassaki G, Rocha H (2015) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13(1):141–158. https://doi.org/10.3390/md13010141

    Article  CAS  Google Scholar 

  77. Tomadoni B, Ponce A, Pereda M, Ansorena M (2019) Vanillin as a natural cross-linking agent in chitosan-based films: optimizing formulation by response surface methodology. Polym Testing. https://doi.org/10.1016/j.polymertesting.2019.105935

    Article  Google Scholar 

  78. Yu Z, Li B, Chu J, Zhang P (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohyd Polym 184:214–220. https://doi.org/10.1016/j.carbpol.2017.12.043

    Article  CAS  Google Scholar 

  79. Thaumaturgo C, Monteiro E (1997) Thermal transitions and polymer/polymer miscibility. J Therm Anal 49(1):235–245. https://doi.org/10.1007/BF01987444

    Article  CAS  Google Scholar 

  80. Benbettaïeb N, Gay JP, Karbowiak T, Debeaufort F (2016) Tuning the functional properties of polysaccharide–protein bio-based edible films by chemical, enzymatic, and physical cross-linking. Compr Rev Food Sci Food Saf 15(4):739–752. https://doi.org/10.1111/1541-4337.12210

    Article  CAS  Google Scholar 

  81. Ramos-Sanchez MC, Rey F, Rodriguez ML, Martin-Gil F, Martin-Gil J (1988) DTG and DTA studies on typical sugars. Thermochim Acta 134:55–60. https://doi.org/10.1016/0040-6031(88)85216-X

    Article  CAS  Google Scholar 

  82. He X, Luzi F, Hao X, Yang W, Torre L, Xiao Z, Xie Y, Puglia D (2019) Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles. Int J Biol Macromol 127:665–676. https://doi.org/10.1016/j.ijbiomac.2019.01.202

    Article  CAS  Google Scholar 

  83. Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystalnanocomposites. J Mater Chem 19(38):7137–7145. https://doi.org/10.1039/B910517D

    Article  CAS  Google Scholar 

  84. Gliko-Kabir I, Penhasi A, Rubinstein A (1999) Characterization of crosslinked guar by thermal analysis. Carbohydr Res 316(1–4):6–13. https://doi.org/10.1016/S0008-6215(99)00025-7

    Article  CAS  Google Scholar 

  85. Shahbazi M, Rajabzadeh G, Rafe A, Ettelaie R, Ahmadi SJ (2016) The physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocoll 60:393–404. https://doi.org/10.1016/j.foodhyd.2016.03.038

    Article  CAS  Google Scholar 

  86. Su J-F, Huang Z, Yuan X-Y, Wang X-Y, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohyd Polym 79(1):145–153. https://doi.org/10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  87. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17(4):973–975

    Article  CAS  Google Scholar 

  88. Suput DZ, Lazić VL, Popović SZ, Hromiš NM (2015) Edible films and coatings: sources, properties and application. Food Feed Res 42(1):11–22. https://doi.org/10.5937/FFR1501011S

    Article  CAS  Google Scholar 

  89. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Coll Interface Sci 74(1–3):69–117. https://doi.org/10.1016/S0001-8686(97)00040-7

    Article  CAS  Google Scholar 

  90. Manna PJ, Mitra T, Pramanik N, Kavitha V, Gnanamani A, Kundu P (2015) Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int J Biol Macromol 75:437–446. https://doi.org/10.1016/j.ijbiomac.2015.01.047

    Article  CAS  Google Scholar 

  91. Pal S, Mal D, Singh R (2007) Synthesis and characterization of cationic guar gum: a high performance flocculating agent. J Appl Polym Sci 105(6):3240–3245. https://doi.org/10.1002/app.26440

    Article  CAS  Google Scholar 

  92. Zhang P, Zhao Y, Shi Q (2016) Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym 153:345–355. https://doi.org/10.1016/j.carbpol.2016.07.082

    Article  CAS  Google Scholar 

  93. Wang S-F, Shen L, Zhang W-D, Tong Y-J (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6(6):3067–3072. https://doi.org/10.1021/bm050378v

    Article  CAS  Google Scholar 

  94. European Commission (2011) Commission Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. European Commission, Brussels

    Google Scholar 

  95. del Rosario M, Moreira MP, Marcovich NE, Roura SI (2011) Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami. J Food Sci 76(1):M54–M63. https://doi.org/10.1111/j.1750-3841.2010.01910.x

    Article  CAS  Google Scholar 

  96. Gadea R, Glibota N, Pulido RP, Gálvez A, Ortega E (2017) Adaptation to biocides cetrimide and chlorhexidine in bacteria from organic foods: Association with tolerance to other antimicrobials and physical stresses. J Agric Food Chem 65(8):1758–1770. https://doi.org/10.1021/acs.jafc.6b04650

    Article  CAS  Google Scholar 

  97. Kaith BS, Sharma R, Kalia S (2015) Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. Int J Biol Macromol 75:266–275. https://doi.org/10.1016/j.ijbiomac.2015.01.046

    Article  CAS  Google Scholar 

  98. Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256. https://doi.org/10.1016/j.foodchem.2015.10.127

    Article  CAS  Google Scholar 

  99. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  Google Scholar 

  100. Ahmed J, Hiremath N, Jacob H (2017) Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int J Food Prop 20(1):53–67. https://doi.org/10.1080/10942912.2015.1131165

    Article  CAS  Google Scholar 

  101. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389. https://doi.org/10.1016/j.materresbull.2010.12.001

    Article  CAS  Google Scholar 

  102. Dhumal CV, Ahmed J, Bandara N, Sarkar P (2019) Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packag Shelf Life 21:100380. https://doi.org/10.1016/j.fpsl.2019.100380

    Article  Google Scholar 

  103. Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25(5):1372–1381. https://doi.org/10.1016/j.foodhyd.2011.01.001

    Article  CAS  Google Scholar 

  104. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author Dr. Saraswati P. Masti, Principal Investigator of the DST-SERB project would like to thank the DST-SERB for providing the financial assistance under project sanction letter No. SB/EMEQ-213/2014, dated: 29-01-2016. This research work is a part of this project. The authors also express their gratitude to The Principal and The HOD, Chemistry, Karnatak Science College, Dharwad for providing infrastructure facilities and The Director, University Scientific Instrumentation Centre (USIC), K. U. Dharwad for providing instrumental facilities.

Funding

This work received support from Science and Engineering Research Board (Grant Nos. SB/EMEQ-213/2014, SB/EMEQ-213/2014).

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Saraswati P. Masti.

Ethics declarations

Conflict of interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasagoudr, S.S., Masti, S.P., Hegde, V.G. et al. Cetrimide Crosslinked Chitosan/Guar Gum/Gum Ghatti Active Biobased Films for Food Packaging Applications. J Polym Environ 31, 579–594 (2023). https://doi.org/10.1007/s10924-022-02655-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02655-3

Keywords

Navigation