Skip to main content
Log in

Preparation of ε-Caprolactone/Fe3O4 Magnetic Nanocomposite and Its Application to the Remazol Brilliant Violet 5R Dye Adsorption from Wastewaters by Using RSM

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, poly (ε-caprolactone)/Fe3O4 magnetic nanocomposite (PCL/Fe3O4 MNC) was synthesized by ring-opening polymerization. Then, PCL/Fe3O4 MNC was used as a novel adsorbent to remove remazol brilliant violet 5R (RBV 5R) from the aqueous media. The effects of PCL/Fe3O4 MNC dosage, process time, and initial RBV 5R concentration on the removal of RBV 5R were studied using the central composite design (CCD) method. The adsorption process was optimized using the response surface methodology, and the optimum conditions were defined. Optimum RBV 5R removal of 95.40% was obtained at a contact time of 167.98 min, PCL/Fe3O4 MNC dosage of 0.40 g, and RBV 5R concentration of 7.18 mg L−1. The process was also designed using the adsorption kinetic models and isotherm. The experimental data of RBV 5R adsorption on PCL/Fe3O4 MNC followed the Langmuir isotherm and pseudo-second-order kinetic models than the other models. Morphological and chemical properties of the adsorbent-adsorbate system indicated the high adsorption yield of RBV 5R on PCL/Fe3O4 MNC was achieved. The structural characteristics of the PCL/Fe3O4 MNC were analyzed by Fourier-transform infrared, attenuated total-reflectance (ATR), and X-ray diffraction. ATR tests showed that no significant change in chemical bond is found in PCL/Fe3O4 MNC before and after the adsorption process. The morphology of composites was investigated by scanning electron microscopy. A vibrating sample magnetometer (VSM) was used for the measurement of the magnetic property. Thermal analysis of MNC was studied using thermogravimetric analysis and differential scanning calorimetry instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All relevant data are within the manuscript.

References

  1. Tiefenauer L, Tschirky A, Kühne G, Andres R (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14(4):391–402

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  CAS  PubMed  Google Scholar 

  3. Zborowski M, Sun L, Moore LR, Williams PS, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194(1–3):224–230

    Article  CAS  Google Scholar 

  4. Lu AH, EeL S, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  5. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  6. Pekdemir ME, Ertürkan D, Külah H, Boyacı İH, Özgen C, Tamer U (2012) Ultrasensitive and selective homogeneous sandwich immunoassay detection by surface enhanced raman scattering (SERS). Analyst 137(20):4834–4840

    Article  CAS  PubMed  Google Scholar 

  7. Griffith L (2000) Polymeric biomaterials. Acta Mater 48(1):263–277

    Article  CAS  Google Scholar 

  8. Arrieta M, Peponi L (2017) Polyurethane based on PLA and PCL incorporated with catechin: structural, thermal and mechanical characterization. Eur Polym J 89:174–184

    Article  CAS  Google Scholar 

  9. Zhang Y, Zhuo R-x (2005) Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials 26(33):6736–6742

    Article  CAS  PubMed  Google Scholar 

  10. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  11. Su T-T, Jiang H, Gong H (2008) Thermal stabilities and the thermal degradation kinetics of poly (ε-caprolactone). Polym-Plast Technol Eng 47(4):398–403

    Article  CAS  Google Scholar 

  12. Hedayatnasab Z, Dabbagh A, Abnisa F, Daud WMAW (2020) Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polym J 133:109789

    Article  CAS  Google Scholar 

  13. Shen J (2006) Application of nanoparticles in polymeric foams. The Ohio State University

  14. Wang G, Yang S, Wei Z, Dong X, Wang H, Qi M (2013) Facile preparation of poly (ε-caprolactone)/Fe 3 O 4@ graphene oxide superparamagnetic nanocomposites. Polym Bull 70(8):2359–2371

    Article  CAS  Google Scholar 

  15. Li S, Qin J, Fornara A, Toprak M, Muhammed M, Kim DK (2009) Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites. Nanotechnology 20(18):185607

    Article  PubMed  Google Scholar 

  16. Wang H, Wang R, Wang L, Tian X (2011) Preparation of multi-core/single-shell OA-Fe3O4/PANI bifunctional nanoparticles via miniemulsion polymerization. Colloids Surf A 384(1–3):624–629

    Article  CAS  Google Scholar 

  17. Zhong W, Liu P, Shi H, Xue D (2010) Ferroferric oxide/polystyrene (Fe3O4/PS) superparamagnetic nanocomposite via facile in situ bulk radical polymerization. Express Polym Lett 4(3):183–187

    Article  CAS  Google Scholar 

  18. Barakat M (2011) Adsorption and photodegradation of procion yellow H-EXL dye in textile wastewater over TiO2 suspension. J Hydro-environ Res 5(2):137–142

    Article  Google Scholar 

  19. Blanco SPDM, Scheufele FB, Módenes AN, Espinoza-Quiñones FR, Marin P, Kroumov AD, Borba CE (2017) Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem Eng J 307:466–475

    Article  Google Scholar 

  20. Aguayo-Villarreal IA, Ramírez-Montoya LA, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA, Ramírez-López E (2013) Sorption mechanism of anionic dyes on pecan nut shells (Carya illinoinensis) using batch and continuous systems. Ind Crops Prod 48:89–97

    Article  CAS  Google Scholar 

  21. Zahrim AY, Tizaoui C, Hilal N (2011) Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: a review. Desalination 266(1–3):1–16

    Article  CAS  Google Scholar 

  22. Pajootan E, Arami M, Mahmoodi NM (2012) Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J Taiwan Inst Chem Eng 43(2):282–290

    Article  CAS  Google Scholar 

  23. Gök Ö, Özcan AS, Özcan A (2010) Adsorption behavior of a textile dye of reactive blue 19 from aqueous solutions onto modified bentonite. Appl Surf Sci 256(17):5439–5443

    Article  Google Scholar 

  24. Box G (1981) Citation classic-on the experimental attainment of optimum conditions. Curr Contents/Eng Technol Appl Sci 43:20–20

    Google Scholar 

  25. Tanyildizi MŞ (2011) Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem Eng J 168(3):1234–1240

    Article  CAS  Google Scholar 

  26. Ghosh A, Das P, Sinha K (2015) Modeling of biosorption of Cu (II) by alkali-modified spent tea leaves using response surface methodology (RSM) and artificial neural network (ANN). Appl Water Sci 5(2):191–199

    Article  CAS  Google Scholar 

  27. Igwegbe CA, Mohmmadi L, Ahmadi S, Rahdar A, Khadkhodaiy D, Dehghani R, Rahdar S (2019) Modeling of adsorption of methylene blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. MethodsX 6:1779–1797

    Article  PubMed  PubMed Central  Google Scholar 

  28. Onu CE, Nwabanne JT, Ohale PE, Asadu CO (2021) Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay. S Afr J Chem Eng 36:24–42

    Google Scholar 

  29. Mansour Ghaffari M, Mostafa K (2011) Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles. Food Nutr Sci 2011:1

    Google Scholar 

  30. Taheri M, Moghaddam MRA, Arami M (2012) Optimization of acid black 172 decolorization by electrocoagulation using response surface methodology. Iran J Environ Health Sci Eng 9(1):1–8

    Article  Google Scholar 

  31. Mohammad Y, Shaibu-Imodagbe E, Igboro S, Giwa A, Okuofu C (2014) Modeling and optimization for production of rice husk activated carbon and adsorption of phenol. J Eng 2014:1

    Article  Google Scholar 

  32. Cheraghipour E, Pakshir M (2021) Environmentally friendly magnetic chitosan nano-biocomposite for Cu (II) ions adsorption and magnetic nano-fluid hyperthermia: CCD-RSM design. J Environ Chem Eng 9(2):104883

    Article  CAS  Google Scholar 

  33. Cheraghipour E, Pakshir M (2020) Process optimization and modeling of Pb (II) ions adsorption on chitosan-conjugated magnetite nano-biocomposite using response surface methodology. Chemosphere 260:127560

    Article  CAS  PubMed  Google Scholar 

  34. Yılmaz Ş, Zengin A, Akbulut Y, Şahan T (2019) Magnetic nanoparticles coated with aminated polymer brush as a novel material for effective removal of Pb (II) ions from aqueous environments. Environ Sci Pollut Res 26(20):20454–20468

    Article  Google Scholar 

  35. Pekdemir ME, Coşkun M (2020) Chemical bonding of Fe 3 O 4 nanoparticles on the surface of poly (acryloyl chloride) functionalized multiwalled carbon nanotubes. Iran J Sci Technol Trans A 44(4):1001–1010

    Article  Google Scholar 

  36. Tamer U, Gündoğdu Y, Boyacı İH, Pekmez K (2010) Synthesis of magnetic core–shell Fe 3 O 4–Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12(4):1187–1196

    Article  CAS  Google Scholar 

  37. Azargohar R, Dalai A (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Microporous Mesoporous Mater 85(3):219–225

    Article  CAS  Google Scholar 

  38. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Article  CAS  PubMed  Google Scholar 

  39. Cui L, Xiong Z, Guo Y, Liu Y, Zhao J, Zhang C, Zhu P (2015) Fabrication of interpenetrating polymer network chitosan/gelatin porous materials and study on dye adsorption properties. Carbohyd Polym 132:330–337

    Article  CAS  Google Scholar 

  40. Zhao Y, Chen Y, Zhao J, Tong Z, Jin S (2017) Preparation of SA-g-(PAA-co-PDMC) polyampholytic superabsorbent polymer and its application to the anionic dye adsorption removal from effluents. Sep Purif Technol 188:329–340

    Article  CAS  Google Scholar 

  41. Pekdemir ME (2021) Thermal properties and shape memory behavior of titanium carbide reinforced poly (vinyl chloride)/poly (ε-caprolactone) blend nanocomposites. Polym Plast Technol Mater 61:1–9

    Google Scholar 

  42. Pekdemir ME (2021) Synthesis, characterization and thermal behavior of carbon fiber reinforced poly (vinyl chloride) and poly (ε-Caprolactone). Fibers Polym 10:1–8

    Google Scholar 

  43. İlboğa S, Pekdemir E, Coşkun M (2019) Cloud point temperature, thermal and dielectrical behaviors of thermosensitive block copolymers based N-isopropylacrylamide. Polym Sci Ser B 61(1):32–41

    Article  Google Scholar 

  44. Pekdemir ME, Pekdemir S, İnci Ş, Kırbağ S, Çiftci M (2021) Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum. Iran J Sci Technol Trans A 45:1–8

    Google Scholar 

  45. Pekdemir ME, Tukur A, Coskun M (2021) Thermal and dielectric investigation of magnetic nanoparticles functionalized with PVC via click chemistry. Polym Bull 78(10):6047–6057

    Article  CAS  Google Scholar 

  46. Torğut G, Tanyol M, Meşe Z (2020) Modeling and optimization of indigo carmine adsorption from aqueous solutions using a novel polymer adsorbent: RSM-CCD. Chem Eng Commun 207(8):1157–1170

    Article  Google Scholar 

  47. Tanyol M, Kavak N, Torğut G (2019) Synthesis of poly (AN-co-VP)/zeolite composite and its application for the removal of brilliant green by adsorption process: kinetics, isotherms, and experimental design. Adv Polym Technol 2019:1

    Article  Google Scholar 

  48. Pekdemir ME, Pekdemir S, İnci Ş, Kırbağ S, Çiftci M (2021) Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum. Iran J Sci Technol Trans A 45(5):1579–1586

    Article  Google Scholar 

  49. Woo K, Hong J, Choi S, Lee H-W, Ahn J-P, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818

    Article  CAS  Google Scholar 

  50. Pekdemir ME (2020) Poli (Vinil klorür)/Fe3o4 manyetik nanopartikül kompozitlerinin sentezi, termal ve elektriksel özelliklerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20(5):802–809

    Google Scholar 

  51. Pekdemir ME, Qader IN, Öner E, Aydoğmuş E, Kök M, Dağdelen F (2021) Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films. Eur Phys J Plus 136(8):1–14

    Article  Google Scholar 

  52. Pekdemir ME, Öner E, Kök M, Qader IN (2021) Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iran Polym J 30(6):633–641

    Article  CAS  Google Scholar 

  53. Mohammadi R, Mohammadifar MA, Mortazavian AM, Rouhi M, Ghasemi JB, Delshadian Z (2016) Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM). Food Chem 190:186–193

    Article  CAS  PubMed  Google Scholar 

  54. Venkatesa P, Girma G, Gizachew A, Surafel B, Ramesh G (2019) Biosolubilization of Cr (VI) from tannery sludge: process modeling, optimization, rate kinetics and thermodynamics aspects. Int J Recent Technol Eng 8(4):4808–4816

    Google Scholar 

  55. Yang ZK, Teng Y, Xia J, Du P (2013) Nickel oxide nanoflowers: formation, structure, magnetic property and adsorptive performance towards organic dyes and heavy metal ions. J Mater Chem A 1(31):8731–8736

    Article  Google Scholar 

  56. Şahan T, Öztürk D (2014) Investigation of Pb (II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol Environ Policy 16(5):819–831

    Article  Google Scholar 

  57. Bagheri R, Ghaedi M, Asfaram A, Dil EA, Javadian H (2019) RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: kinetic and isotherm studies. Polyhedron 171:464–472

    Article  CAS  Google Scholar 

  58. Malik PK (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigment 56(3):239–249

    Article  CAS  Google Scholar 

  59. Draoua Z, Harrane A, Adjdir M (2021) Preparation, characterization and application of the nanocomposite PCL-PEG-PCL/Bentonite for the removal of methylene blue (MB) dye. Res Chem Intermed 47:1–21

    Article  Google Scholar 

  60. Toprak A, Hazer B (2020) Novel porous carbon microtubes and microspheres produced from poly (CL-b-VbC) triarm block copolymer as high performance adsorbent for dye adsorption and separation. J Mol Liq 314:113565

    Article  CAS  Google Scholar 

  61. Tanyol M, Torğut G (2021) Chitosan-graft-poly (N-Tert-Butylacrylamide) copolymer: synthesis, characterization and optimization of tetracycline removal using RSM. J Polym Environ 30:752

    Article  Google Scholar 

  62. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  63. Allen S, Mckay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280(2):322–333

    Article  CAS  PubMed  Google Scholar 

  64. Moon H, Lee WK (1983) Intraparticle diffusion in liquid-phase adsorption of phenols with activated carbon in finite batch adsorber. J Colloid Interface Sci 96(1):162–171

    Article  CAS  Google Scholar 

  65. Rápó E, Aradi LE, Szabó Á, Posta K, Szép R, Tonk S (2020) Adsorption of remazol brilliant violet-5R textile dye from aqueous solutions by using eggshell waste biosorbent. Sci Rep 10(1):1–12

    Article  Google Scholar 

  66. Bello OS, Siang TT, Ahmad MA (2012) Adsorption of remazol brilliant violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: kinetic, equilibrium and thermodynamic studies. Asia-Pac J Chem Eng 7(3):378–388

    Article  CAS  Google Scholar 

  67. Lai HJ (2021) Adsorption of remazol brilliant violet 5R (RBV-5R) and remazol brilliant blue R (RBBR) from aqueous solution by using agriculture waste. Trop Aquat Soil Pollut 1(1):11–23

    Article  Google Scholar 

  68. Chang TW, Hadibarata T, Syafrudin M (2020) Functionalized stink bean pod (Parkia speciosa) powder for adsorption of reactive dye. Biointerface Res Appl Chem 11:11616

    Article  Google Scholar 

  69. Rahmaniah G, Mahdi C, Safitri A (2019) Biosorption of synthetic dye from batik wastewater using Trichoderma viride immobilized on Ca-alginate. J Phys 1374:012007

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MEP synthesized, characterized and studied the magnetic properties of the polymer nanocomposite and drew all relevant graphs. MT designed all the adsorption experiments. GT and MT performed the adsorption experiments, applied the RSM technique and drew all the related graphs and tables. All authors contributed to the writing of the article, read, and reviewed the submitted version.

Corresponding author

Correspondence to Mustafa Ersin Pekdemir.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical Approval

Not applicable.

Consent to Participate

All authors participated in the work.

Consent to Publish

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekdemir, M.E., Tanyol, M. & Torğut, G. Preparation of ε-Caprolactone/Fe3O4 Magnetic Nanocomposite and Its Application to the Remazol Brilliant Violet 5R Dye Adsorption from Wastewaters by Using RSM. J Polym Environ 30, 4225–4237 (2022). https://doi.org/10.1007/s10924-022-02500-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02500-7

Keywords

Navigation