Skip to main content
Log in

Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The main goal in this work was to prepare and characterize a kind of novel superparamagnetic poly(ε-caprolactone)/Fe3O4@graphene oxide (PCL/Fe3O4@GO) nanocomposites via facile in situ polymerization. Fabrication procedure included two steps: (1) GO nanosheets were decorated with Fe3O4 nanoparticles by an inverse co-precipitation method, which resulted in the production of the magnetite/GO hybrid nanoparticles (Fe3O4@GO); (2) incorporation of Fe3O4@GO into PCL matrix through in situ polymerization afforded the magnetic nanocomposites (PCL/Fe3O4@GO). The microstructure, morphology, crystallization properties, thermal stability and magnetization properties of nanocomposites were investigated with various techniques in detail. Results of wide-angle X-ray diffraction showed that the incorporation of the Fe3O4@GO nanoparticles did not affect the crystal structure of PCL. Images of field emission scanning electron microscope and transmission electron microscopy showed Fe3O4@GO nanoparticles evenly spread over PCL/Fe3O4@GO nanocomposites. Differential scanning calorimeter and polar optical microscopy showed that the crystallization temperature increased and the spherulites size decreased by the presence of Fe3O4@GO nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. Thermogravimetric analysis indicated that the addition of Fe3O4@GO nanoparticles reduced the thermal stability of PCL in the nanocomposites. The superparamagnetic behavior of the PCL/Fe3O4@GO nanocomposites was testified by the superconducting quantum interference device magnetometer analysis. The obtained superparamagnetic nanocomposites present potential applications in tissue engineering and targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  4. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  5. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  CAS  Google Scholar 

  6. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101

    Article  CAS  Google Scholar 

  7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  8. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  9. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  10. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  11. Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou XL, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173

    Article  CAS  Google Scholar 

  12. Robinson J, Perkins F, Snow E, Wei ZQ, Sheehan P (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140

    Article  CAS  Google Scholar 

  13. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  14. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, Dai HJ (2008) Highly conducting graphene sheets and Langmuir–Blodgett films. Nat Nanotechnol 3:538–542

    Article  CAS  Google Scholar 

  15. Li XL, Wang XR, Zhang L, Lee S, Dai HJ (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  CAS  Google Scholar 

  16. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  17. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Piner RD, Kohlhass KM, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  19. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt RJ (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  20. Goncalves G, Marques P, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  21. Xu C, Wang X, Zhu JW (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  22. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  23. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  24. Frey NA, Peng S, Cheng K, Sun SH (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    Article  CAS  Google Scholar 

  25. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  CAS  Google Scholar 

  26. Cong HP, He JJ, Lu Y, Yu SH (2009) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6:169–173

    Article  Google Scholar 

  27. He HK, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mate Inter 2:3201–3210

    Article  CAS  Google Scholar 

  28. Li XY, Huang XL, Liu DP, Wang X, Song SY, Zhou L, Zhang HJ (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573

    Article  CAS  Google Scholar 

  29. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393:1–11

    Article  Google Scholar 

  30. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48:263–277

    Article  CAS  Google Scholar 

  31. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  32. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  33. Duda A, Penczek S, Kowalski A, Libiszowski J (2000) Polymerizations of ε-caprolactone and l, l-dilactide initiated with stannous octoate and stannous butoxide-a comparison. Macromol Symp 153:41–53

    Article  CAS  Google Scholar 

  34. Fu YS, Chen HQ, Sun XQ, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ 111–112:280–287

    Article  Google Scholar 

  35. Zhang SP, Xiong P, Yang XJ, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3:2169–2174

    Article  CAS  Google Scholar 

  36. Su J, Cao MH, Ren L, Hu CW (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469–14477

    Article  CAS  Google Scholar 

  37. Fan Y, Nishida H, Mori T, Shirai Y, Endo T (2004) Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l, l-lactide formation. Polymer 45:1197–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No. 31000427, 81271719, 81271720) and the Fundamental Research Funds for the Central Universities (DUT12JB09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wei, Hong Wang or Min Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Yang, S., Wei, Z. et al. Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polym. Bull. 70, 2359–2371 (2013). https://doi.org/10.1007/s00289-013-0957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0957-5

Keywords

Navigation