Skip to main content
Log in

A superabsorbent hydrogel for removal of dyes from aqueous solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The removal of dye pollutants from dyeing and printing industrial wastewater is a very important issue, and different methods have developed for this purpose. Here, a hydrogel adsorbent gelatin/chitosan/β-cyclodextrin/sodium humate (GEL/CS/β-CD/SH) was developed by a simple method for removal of the reactive dyes in aqueous solutions. The hydrogel used as an adsorbent had a good adsorption to different kinds of organic dyes. In this work, we focused on the adsorption process of GEL/CS/β-CD/SH hydrogels to the cationic dyes methylene blue (MB) and anionic dyes acid fuchsin (AF), which are commonly used in the printing and dyeing industry. The effects of dye solution pH, ionic strength, temperature, and contact time were investigated in a batch system. The adsorption thermodynamic and dynamic behaviors towards AF and MB were investigated in detail. The adsorption process could occur spontaneously at environmental temperature. The results indicated that the maximum adsorption capacity of AF and MB reached 1666.7 mg/g and 714.3 mg/g, respectively. Moreover, the GEL/CS/β-CD/SH hydrogel could be degraded completely by microorganisms in the soil. Therefore, GEL/CS/β-CD/SH hydrogel has a potential application as an effective adsorbent for the treatment of dyeing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol 97:1061–1085

    Article  CAS  PubMed  Google Scholar 

  2. Pan B, Pan B, Zhang W, Zhang Q, Zhang Q, Zheng S (2008) Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. J Hazard Mater 157(2–3):293–299

    Article  CAS  PubMed  Google Scholar 

  3. Umbuzeiro GA, Freeman HS, Warren SH, Oliveira DP, Terao Y, Watan-abe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60(1):55–64

    Article  CAS  Google Scholar 

  4. Wang Y, Chen D, Wang Y, Huang F, Hu Q, Lin Z (2012) Tunable surface charge of ZnS: Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater. Nanoscale 4(12):3665–3668

    Article  CAS  PubMed  Google Scholar 

  5. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165

    Article  CAS  PubMed  Google Scholar 

  6. van Voorthuizen E, Zwijnenburg A, van der Meer W, Temmink H (2008) Biological black water treatment combined with membrane separation. Water Res 42(16):4334–4340

    Article  PubMed  CAS  Google Scholar 

  7. Mishra DD, Tan G (2018) Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J Phys Chem Solids 123:157–161

    Article  CAS  Google Scholar 

  8. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1(6):1992–2001

    Article  CAS  Google Scholar 

  9. Sanchez AG, Ayuso EA (2002) Sorption of Zn, Cd and Cr on calcite: Application to purification of industrial wastewater. Min Eng J 15(7):539–547

    Article  Google Scholar 

  10. Sharma G, Pathania D, Naushad M (2015) Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 21(4):1045–1055

    Article  CAS  Google Scholar 

  11. Sharma G, Kumar A, Naushad M, Thakur B, Stadler FJ (2021) Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel. J Hazard Mater 416:125714

    Article  CAS  PubMed  Google Scholar 

  12. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemiclectrochemical and biological methods for aqueous Cr(VI) reduction.J. Hazard. Mater. 223–224, 1–12

  13. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680

    Article  CAS  Google Scholar 

  14. Ding J, Li B, Liu Y, Yan X, Zeng S, Zhang X, Hou L, Cai Q (2015) Zhang. Fabrication of Fe3O4 @reduced graphene oxide composite via novel colloid electrostatic selfassembly process for removal of contaminants from water. J Mater Chem A 3(2):832–839

    Article  CAS  Google Scholar 

  15. Chaari I, Fakhfakh E, Medhioub M, Jamoussi F (2019) Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J Mol Struct 1179:672–677

    Article  CAS  Google Scholar 

  16. Araki S, Li T, Li K, Yamamoto H (2019) Preparation of zeolite hollow fibers for high-efficiency cadmium removal from waste water. Sep Purif Technol 221:393–398

    Article  CAS  Google Scholar 

  17. Fan JC, Shi ZX, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433–7443

    Article  CAS  Google Scholar 

  18. Wang Y, Yu L, Wang R, Wang Y, Zhang X (2020) A novel cellulose hydrogel coating with nanoscale Fe0 for Cr (VI) adsorption and reduction. Sci Total Environ 726:1386255

    Google Scholar 

  19. Sharma R, Kaith BS, Kalia S, Pathania D, Kumar A, Sharma N, Street RM, Schauer C (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45

    Article  CAS  Google Scholar 

  20. Tu H, Yu Y, Chen J, Shi XW, Zhou JL, Deng HB, Du YM (2017) Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polym Chem 8(19):2913–2921

    Article  CAS  Google Scholar 

  21. Njuguna DG, Schönherr H (2021) Xanthan Gum hydrogels as high-capacity adsorbents for dye removal. ACS Appl Polym Mater 3(6):3142–3152

    Article  CAS  Google Scholar 

  22. Zhao X, Wang X, Lou T (2021) Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J Hazard Mater 403:124054

    Article  CAS  PubMed  Google Scholar 

  23. Hong GB, Yu TJ, Lee HC, Ma CM (2021) Using rice bran hydrogel beads to remove dye from aqueous solutions. Sustainability 13(10):1–13

    Article  CAS  Google Scholar 

  24. Pérez-Calderón J, Santos MV, Zaritzky N (2018) Reactive red 195 dye removal using chitosan coacervated particles as bio-sorbent: Analysis of kinetics, equilibrium and adsorption mechanisms. J Environ Chem Eng 6(5):6749–6760

    Article  CAS  Google Scholar 

  25. Liu S, Li L (2018) Unique gelation of chitosan in an alkali/urea aqueous solution. Polymers 141(8):124–131

    Article  CAS  Google Scholar 

  26. Sujin Lim D, Jeong M-R, Ki SP, Pack YS, Choi Tyrosinase-mediated rapid and permanent chitosan/gelatin and chitosan/gelatin/nanohydroxyapatite hydrogel.Korean J. Chem. Eng. 38(1):98–103

  27. Ishak WHW, Ahmad I, Ramli S, Amin MCIM (2018) Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials 8(10):749. DOI: https://doi.org/10.3390/nano8100749

    Article  CAS  Google Scholar 

  28. Zhang J, Xue Y, Gao F, Huang S, Zhuo R (2008) Preparation of temperature-sensitive poly(N-isopropylacrylamide)/β-cyclodextrin-grafted polyethylenimine hydrogels for drug delivery. J Appl Polym Sci 108:3031–3037

    Article  CAS  Google Scholar 

  29. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38(2):344–368

    Article  CAS  Google Scholar 

  30. Kyzas GZ, Bikiaris DN, Lambropoulou DA (2017) Effect of humic acid on pharmaceuticals adsorption using sulfonic acid grafted chitosan. J Mol Liq 230:1–5

    Article  CAS  Google Scholar 

  31. Wang F, Sun H, Ren X, Liu Y, Zhu H, Zhang P, Ren C (2017) Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars. Environ Pollut 231:229–236

    Article  CAS  PubMed  Google Scholar 

  32. Nascimento FH, Masini JS (2014) Influence of humic acid on adsorption of Hg(II) by vermiculite. J Environ Manage 143:1–7

    Article  PubMed  CAS  Google Scholar 

  33. Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44(16):6189–6195

    Article  CAS  PubMed  Google Scholar 

  34. Yuan Z, Liu H, Wu H, Wang Y, Wang J, Hydrogels C (2020) Rapid Removal of Aromatic Micropollutants and Adsorption Mechanisms. J Chem Eng Data 65(2):678–689

    Article  CAS  Google Scholar 

  35. Ren J, Wang XM, Zhao LL, Li M, Yang W (2021) Double Network Gelatin/Chitosan Hydrogel Effective Removal of Dyes from Aqueous Solutions. J Polym Environ 29. DOI: https://doi.org/10.1007/s10924-021-02327-8

    Article  Google Scholar 

  36. Nickerson MT, Patel J, Heyd DV, Rousseau D, Paulson AT (2006) Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int J Bio Macromol 39(4–5):298–302

    Article  CAS  Google Scholar 

  37. Santoso UT, Santosa SJ, Siswanta D, Rusdiarso B, Shimazu S (2010) Characterization of sorbent produced through immobilization of humic acid on chitosan using glutaraldehyde as cross-linking agent and Pb(II) ion as active site protector. Indo J Chem 10:301–309

    Article  Google Scholar 

  38. Asing J, Wong NC, Lau S (2009) Optimization of extraction method and characterization of humic acid derived from coals and composts. J Trop Agric & Fd Sc 37:211–223

    Google Scholar 

  39. Santos AMP, Bertoli AC, Borges ACCP, Gomes RAB, Garcia JS, Trevisan MG (2018) New organomineral complex from humic substances extracted from poultry wastes: Synthesis, characterization and controlled release study. J Braz Chem Soc 29:140–150

    CAS  Google Scholar 

  40. Doshi B, Ayati A, Tanhaei B, Repo E, Sillanpaa M (2018) Partially carboxymethylated and partially cross-linked surface of chitosan versus the adsorptive removal of dyes and divalent metal ions. Carbohydr Polym 197:586–597

    Article  CAS  PubMed  Google Scholar 

  41. Li KR, Yan JH, Zhou Y, Li BD, Li X (2021) β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: Adsorption performance, adsorption mechanism and hydrogel column process investigates. J Mol Liq 335:116291

    Article  CAS  Google Scholar 

  42. Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529:190–194

    Article  CAS  PubMed  Google Scholar 

  43. Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater–A short review. Adv Colloid & Interface Sci 152(1–2):26–38

    Article  CAS  Google Scholar 

  44. Deng W, Tang S, Zhou X, Liu Y, Liu S, Luo J (2020) Honeycomb-like structure-tunable chitosan-based porous carbon microspheres for methylene blue efficient removal. Carbohydr Polym 247:116736

    Article  CAS  PubMed  Google Scholar 

  45. Zheng X, Ruan Q, Jiang Q, Wang K, Wang Q, Tang Y, Huang H, Zhong C (2018) Integrated adsorption and catalytic degradation of safranine T by a porous covalent triazine-based framework. J Colloid Interface Sci 532:1–11

    Article  CAS  PubMed  Google Scholar 

  46. Hu XS, Liang R, Sun G (2018) Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J Mater Chem A 6:17612–17624

    Article  CAS  Google Scholar 

  47. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55

    Article  CAS  Google Scholar 

  48. Joseph L, Zaib QA, Khan I, Berge ND, Park Y, Saleh NB, Yoon Y (2011) Removal of bisphenol A and 17a-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res 45:4056–4068

    Article  CAS  PubMed  Google Scholar 

  49. Shan M, Liu C, Shi L, Zhang L, Lin Y, Zhang S, Zhu Z, Wang X, Zhuang X (2019) In situ synthesis of au nanoparticles on viscose cellulose sponges for antibacterial activities,Polymers, 11(8)

  50. Anbinder PS, Macchi C, Amalvy J, Somoza A (2019) A study of the structural changes in a chitosan matrix produced by the adsorption of copper and chromium ions,Carbohydr. Polym.,222

  51. Dada AO, Olalekan AP, OLatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin – Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+. Unto Phosphoric Acid. Modif. Rice Husk. J Appl Chem 3:38–45

    Google Scholar 

  52. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  PubMed  Google Scholar 

  53. Xu X, Yu J, Liu C, Yang G, Shi L, Zhuang X (2021) Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes. React & Funct Polym 160:104840

    Article  CAS  Google Scholar 

  54. Wang N, Xu X, Li H, Zhai J, Yuan L, Zhang K, Yu H (2016) Preparation and application of a xanthate-modified Thiourea chitosan sponge for the removal of Pb (II) from aqueous solutions. Ind Eng Chem Res 55(17):4960–4968

    Article  CAS  Google Scholar 

  55. Zhou Y, Hu X, Zhang M, Zhuo X, Niu J (2013) Preparation and characterization of modified cellulose for adsorption of Cd(II), Hg(II), and acid Fuchsin from aqueous solutions. Ind Eng Chem Res 52(2):876–884

    Article  CAS  Google Scholar 

  56. Ho YS, Mckay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340

    Article  CAS  Google Scholar 

  57. Ho YS, McKay G (1999) Pseudo-second-order model for sorption process. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  58. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Article  Google Scholar 

  59. Zhang R, Zhang J, Zhang X, Dou C, Han R (2014) Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study. J Taiwan Inst Chem Eng 45(5):2578–2583

    Article  CAS  Google Scholar 

  60. Zhang F, Lan J, Yang Y, Wei T, Tan R, Song W (2013) Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J Nanopart Res 15(11). https://doi.org/10.1007/s11051-013-2034-2

  61. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  62. Wang X, Xing Y, Zhao X, Ji Q, Xia Y, Ma X (2019) Robust, recoverable poly(N,N-dimethylacrylamide)-based hydrogels crosslinked by vinylated chitosan with recyclable adsorbability for acid red. J Appl Polym Sci 136(20):47473

    Article  CAS  Google Scholar 

  63. Freundlich H (1932) Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Trans Faraday Soc 28:195–201

    Article  CAS  Google Scholar 

  64. Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM (2020) Novel carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int J Biol Macromol 154:307–318

    Article  CAS  PubMed  Google Scholar 

  65. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308

    Article  CAS  PubMed  Google Scholar 

  66. Li DP, Zhang YR, Zhao XX, Zhao BX (2013) Magnetic nanoparticles coated by aminoguanidine for selective adsorption of acid dyes from aqueous solution. Chem Eng J 232:425–433

    Article  CAS  Google Scholar 

  67. Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73

    Article  CAS  Google Scholar 

  68. Anirudhan TS, Tharun AR (2012) Preparation and adsorption properties of a novel interpenetrating polymer network (IPN) containing carboxyl groups for basic dye from aqueous media.Chem. Eng. J.,181–182, 761–769

  69. Bekiari V, Sotiropoulou M, Bokias G, Lianos P (2008) Use of poly(N,N-dimethylacrylamide-co-sodium acrylate) hydrogel to extract cationic dyes and metals from water. Colloids & Surf A 312(2–3):214–218

    Article  CAS  Google Scholar 

  70. Coşkun R, Delibaş A (2012) Removal of methylene blue from aqueous solutions by poly(2-acrylamido-2-methylpropane sulfonic acid-co-itaconic acid) hydrogels. Polym Bull 68:1889–1903

    Article  CAS  Google Scholar 

  71. Singh T, Singhal R (2012) Poly(acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. J Appl Polym Sci 125(2):1267–1283

    Article  CAS  Google Scholar 

  72. Yang SX, Wu YH, Wu YY, Zhu L (2015) Optimizing decolorization of Acid Fuchsin and Acid Orange II solution by MnO2 loaded MCM-41. J Taiwan Inst Chem Eng 50:205–214

    Article  CAS  Google Scholar 

  73. Krishnan S, Chatterjee S, Solanki A, Guha N, Rai DK (2020) Aminotetrazole-functionalized SiO2 coated MgO nanoparticle composites for removal of acid fuchsin dye and detection of heavy metal ions. ACS Appl Nano Mater 3(11):11203–11216

    Article  CAS  Google Scholar 

  74. Li Y, Sun J, Du Q, Zhang L, Yang X, Wu S, Xia Y, Wang Z, Xia L, Cao A (2014) Mechanical and dye adsorption Properties of grapheneoxide/chitosan composite fibers prepared by wet spinning. Carbohydr Polym 102:755–761

    Article  CAS  PubMed  Google Scholar 

  75. Li J, Feng J, Yan W (2013) Synthesis of polypyrrole-modified TiO2 composite adsorbent and its adsorption performance on acid Red G. J Appl Polym Sci 128(5):3231–3239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (21665024), the Basic Project of Science and Research of Colleges and Universities of Gansu Province (5001 − 109) and the Project for Young Teacher of Northwest Normal University (NWNU-LKQN-13-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Ethics declarations

Notes

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Li, R., Wang, X. et al. A superabsorbent hydrogel for removal of dyes from aqueous solution. J Polym Environ 30, 3327–3339 (2022). https://doi.org/10.1007/s10924-022-02434-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02434-0

Keywords

Navigation