Skip to main content
Log in

An Enzymatic Method for Harvesting Functional Melanosomes after Keratin Extraction: Maximizing Resource Recovery from Human Hair

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hair contains about 80% keratins and 1–3% melanin packaged in melanosomes. Both of these are high-value and functional raw materials that have potential applications in wide-ranging fields. While keratin extraction has been widely refined, efficient methods of melanosome extraction are limited. The extraction of melanosomes requires complete removal of keratin, thus combining keratin extraction and melanosome isolation is logical. Herein, a successive process to harvest melanosomes after keratin extraction from human hair waste was developed. The yield of melanosomes was about 1.3% of the total hair mass. The structure of harvested melanosomes is well preserved based on surface morphology and interior ultrastructural observations using electron microscopy. The chemical structure, ultraviolet (UV)-filtering ability, and thermal stability of the melanosomes are examined to demonstrate preservation of native functions. Our strategy of combining melanosome isolation with keratin extraction is shown to be effective and significantly improves the total resource recovery efficiency from human hair waste.

Graphic Abstract

Effective harvesting of functional melanosomes following keratin extraction from human hair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, K.W.N.

References

  1. Ankush G (2014) Human hair “waste” and its utilization: gaps and possibilities. J Waste Manage. https://doi.org/10.1155/2014/498018

    Article  Google Scholar 

  2. Chojnacka K, Górecka H, Michalak I, Górecki H (2011) A review: valorization of keratinous materials. Waste Biomass Valoriz 2(3):317–321. https://doi.org/10.1007/s12649-011-9074-6

    Article  Google Scholar 

  3. Singh N, Prasad K (2019) Multi-tasking hydrated ionic liquids as sustainable media for the processing of waste human hair: a biorefinery approach. Green Chem 21(12):3328–3333. https://doi.org/10.1039/C9GC00542K

    Article  CAS  Google Scholar 

  4. Plowman JE, Harland DP, Deb-Choudhury S (2018) The hair fibre: proteins, structure and development. Adv Exp Med Biol. https://doi.org/10.1007/978-981-10-8195-8

    Article  PubMed  Google Scholar 

  5. Liu Y, Kempf VR, Brian NJ, Weinert EE, Rudnicki M, Wakamatsu K, Ito S, Simon JD (2003) Comparison of the structural and physical properties of human hair eumelanin following enzymatic or acid/base extraction. Pigm Cell Res 16(4):355–365. https://doi.org/10.1034/j.1600-0749.2003.00059.x

    Article  Google Scholar 

  6. Haywood RM, Lee M, Andrady C (2008) Comparable photoreactivity of hair melanosomes, Eu- and pheomelanins at low concentrations: low melanin a risk factor for UVA damage and melanoma? Photochem Photobiol 84(3):572–581. https://doi.org/10.1111/j.1751-1097.2008.00343.x

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Li Y, Hu Z, Yue X, Proetto MT, Jones Y, Gianneschi NC (2017) Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols. ACS Central Sci. https://doi.org/10.1021/acscentsci.6b00230

    Article  Google Scholar 

  8. Pralea I-E, Moldovan R-C, Petrache A-M, Ilieș M, Hegheș S-C, Ielciu I, Nicoară R, Moldovan M (2019) From extraction to advanced analytical methods: the challenges of melanin analysis. Int J Mol Sci 20(16):3943. https://doi.org/10.3390/ijms20163943

    Article  CAS  PubMed Central  Google Scholar 

  9. Zhao Z, Vizetto-Duarte C, Moay ZK, Setyawati MI, Rakshit M, Kathawala MHN, Ng KW (2020) Composite hydrogels in three-dimensional in vitro models. Front Bioeng Biotechnol 8:611. https://doi.org/10.3389/fbioe.2020.00611

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh V, Wang SN, Ng KW (2017) 2.25 Keratin as a biomaterial. Compr Biomater II 2:542–557. https://doi.org/10.1016/B978-0-12-803581-8.09317-6

    Article  Google Scholar 

  11. Ko J, Nguyen L, Surendran A, Tan BY, Ng KW, Leong WL (2017) Human hair keratin for biocompatible flexible and transient electronic devices. ACS Appl Mater Interfaces 49(9):43004–43012. https://doi.org/10.1021/acsami.7b16330

    Article  CAS  Google Scholar 

  12. Xiao M, Li Y, Allen MC, Deheyn DD, Dhinojwala A (2015) Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano 9(5):5454. https://doi.org/10.1021/acsnano.5b01298

    Article  CAS  PubMed  Google Scholar 

  13. Xiao M, Shawkey M, Dhinojwala A (2020) Bioinspired melanin-based optically active materials. Adv Opt Mater. https://doi.org/10.1002/adom.202000932

    Article  Google Scholar 

  14. Zheng DW, Hong S, Xu L, Li CX, Li K, Cheng SX, Zhang XZ (2018) Hierarchical micro-/nanostructures from human hair for biomedical applications. Adv Mater 30(27):1800836. https://doi.org/10.1002/adma.201800836

    Article  CAS  Google Scholar 

  15. Solano F (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci 18(7):1561. https://doi.org/10.3390/ijms18071561

    Article  CAS  PubMed Central  Google Scholar 

  16. Xiao M, Chen W, Li W, Zhao J, Hong Y-L, Nishiyama Y, Miyoshi T, Shawkey MD (2018) Elucidation of the hierarchical structure of natural eumelanins. J R Soc Interface 15(140):20180045. https://doi.org/10.1098/rsif.2018.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ito S, Miyake S, Maruyama S, Suzuki I, Commo S, Nakanishi Y, Wakamatsu K (2018) Acid hydrolysis reveals a low but constant level of pheomelanin in human black to brown hair. Pigment Cell Melanoma Res 31(3):393–403. https://doi.org/10.1111/pcmr.12673

    Article  CAS  PubMed  Google Scholar 

  18. Roy J, Roy B (1965) Isolation of some acid soluble protein pigments from dark colored human hair. J Proc Inst Chem 37:257–261

    CAS  Google Scholar 

  19. Filson A, Hope J (1957) Isolation of melanin granules. Nature 179(4552):211–211. https://doi.org/10.1038/179211a0

    Article  CAS  Google Scholar 

  20. Wolfram LJ, Hall K, Hui I (1970) The mechanism of hair bleaching. J Soc Cosmet Chem 21:875–900

    CAS  Google Scholar 

  21. Arnaud JC, Bore P (1981) Isolation of melanin pigments from human hair. J Soc Cosmet Chem 32:137

    CAS  Google Scholar 

  22. Ito S (1986) Reexamination of the structure of eumelanin. Biochim Biophys Acta (BBA) Gen Subj 883(1):155–161. https://doi.org/10.1016/0304-4165(86)90146-7

    Article  CAS  Google Scholar 

  23. Itou T (2018) Morphological changes in hair melanosomes by aging. Pigment Cell Melanoma Res 31(5):630–635. https://doi.org/10.1111/pcmr.12697

    Article  CAS  PubMed  Google Scholar 

  24. Itou T, Ito S, Wakamatsu K (2019) Effects of aging on hair color, melanosome morphology, and melanin composition in Japanese Females. Int J Mol Sci 20(15):3739. https://doi.org/10.3390/ijms20153739

    Article  CAS  PubMed Central  Google Scholar 

  25. Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng CY, Bowers CR, Simon JD (2005) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81(1):135–144. https://doi.org/10.1111/j.1751-1097.2005.tb01532.x

    Article  CAS  PubMed  Google Scholar 

  26. Ghiani S, Baroni S, Burgio D, Digilio G, Fukuhara M, Martino P, Monda K, Nervi C (2008) Characterization of human hair melanin and its degradation products by means of magnetic resonance techniques. Magn Reson Chem 46(5):471–479. https://doi.org/10.1002/mrc.2202

    Article  CAS  PubMed  Google Scholar 

  27. Xie W, Pakdel E, Liu D, Sun L, Wang X (2019) Waste-hair-derived natural melanin/TiO2 hybrids as highly efficient and stable UV-shielding fillers for polyurethane films. ACS Sustain Chem Eng 8(3):1343–1352. https://doi.org/10.1021/acssuschemeng.9b03514

    Article  CAS  Google Scholar 

  28. Brown EM, Pandya K, Taylor MM, Liu CK (2016) Comparison of methods for extraction of keratin from waste wool. Agric Sci 07(10):670–679. https://doi.org/10.4236/as.2016.710063

    Article  CAS  Google Scholar 

  29. Wang K, Li R, Ma JH, Jian YK, Che JN (2016) Extracting keratin from wool by using L-cysteine. Green Chem 18(2):476–481. https://doi.org/10.1039/C5GC01254F

    Article  CAS  Google Scholar 

  30. Wang S, Wang Z, Foo S, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW (2015) Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater Interfaces 7(9):5187. https://doi.org/10.1021/acsami.5b00854

    Article  CAS  PubMed  Google Scholar 

  31. Fujii T, Murai S (2005) Extraction of protein from human nails and preparation of nail protein films. Kobunshi Rombun Shu 62(5):201–207. https://doi.org/10.1295/koron.62.201

    Article  CAS  Google Scholar 

  32. Lu H, Yan L, Wang K, Fang L, Zhang H, Tang Y, Ding Y, Weng LT (2017) Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. https://doi.org/10.1038/am.2017.33

    Article  Google Scholar 

  33. Roy S, Kim HC, Kim JW, Zhai L, Zhu QY, Kim J (2020) Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Mater Today Commun 24:100984. https://doi.org/10.1016/j.mtcomm.2020.100984

    Article  CAS  Google Scholar 

  34. Wang Y, Su J, Li T, Ma P, Bai H (2017) A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b08763

    Article  PubMed  PubMed Central  Google Scholar 

  35. Imai T, Higuchi K, Yamamoto Y, Arai S, Nakano T, Tanaka N (2016) Sub-nm 3D observation of human hair melanin by high-voltage STEM. Microscopy 65(2):185–189. https://doi.org/10.1093/jmicro/dfv372

    Article  PubMed  Google Scholar 

  36. Lai HY, Setyawati MI, Ferhan AR, Divakarla SK, Chua HM, Cho NJ, Chrzanowski W, Ng KW (2021) Self-assembly of solubilized human hair keratins. ACS Biomater Sci Eng 7(1):83–89. https://doi.org/10.1021/acsbiomaterials.0c01507

    Article  CAS  PubMed  Google Scholar 

  37. Chua HM, Zhao Z, Ng KW (2020) Cryogelation of human hair keratins. Macromol Rapid Commun 41(21):e2000254. https://doi.org/10.1002/marc.202000254

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Z, Zi KM, Lai HY, Goh B, Chua HM, Setyawati MI, Ng KW (2020) Characterization of anisotropic human hair keratin scaffolds fabricated via directed ice templating. Macromol Biosci. https://doi.org/10.1002/mabi.202000314

    Article  PubMed  Google Scholar 

  39. Taraballi F, Wang S, Li J, Lee F, Venkatraman SS, Birch WR, Teoh SH, Boey F (2012) Understanding the nano-topography changes and cellular influences resulting from the surface adsorption of human hair keratins. Adv Healthcare Mater. https://doi.org/10.1002/adhm.201200043

    Article  Google Scholar 

  40. Zhang N, Wang Q, Yuan J, Cui L, Wang P, Yu Y, Fan X (2018) Highly efficient and eco-friendly wool degradation by L-Cysteine-assisted esperase. J Clean Prod 192(AUG. 10):433–442. https://doi.org/10.1016/j.jclepro.2018.05.008

    Article  CAS  Google Scholar 

  41. Signori V, Lewis DM (1997) FTIR investigation of the damage produced on human hair by weathering and bleaching processes: implementation of different sampling techniques and data processing. Int J Cosmet Sci 19(1):1–13. https://doi.org/10.1111/j.1467-2494.1997.tb00161.x

    Article  CAS  PubMed  Google Scholar 

  42. Jimbow K, Miyake Y, Homma K, Yasuda K, Ito S (1984) Characterization of melanogenesis and morphogenesis of melanosomes by physiochemical properties of melanin and melanosomes in malignant melanoma. Cancer Res 44(3):1128–1134. https://doi.org/10.1016/0304-3835(84)90015-6

    Article  CAS  PubMed  Google Scholar 

  43. Xin C, Ma JH, Tan CJ, Yang Z, Ye F, Long C, Ye S, Hou DB (2015) Preparation of melanin from Catharsius molossus L. and preliminary study on its chemical structure. J Biosci Bioeng 119(4):446–454. https://doi.org/10.1016/j.jbiosc.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  44. Simonovic B, Vucelic V, Hadzi-Pavlovic A, Stepien K, Wilczok T, Vucelic D (1990) Thermogravimetry and differential scanning calorimetry of natural and synthetic melanins. J Therm Anal 36(7–8):2475–2482. https://doi.org/10.1007/bf01913644

    Article  CAS  Google Scholar 

  45. Gómez-Marín AM, Sánchez CI (2010) Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. J Non-Cryst Solids 356(31–32):1576–1580. https://doi.org/10.1016/j.jnoncrysol.2010.05.054

    Article  CAS  Google Scholar 

  46. Wang LF, Rhim JW (2019) Isolation and characterization of melanin from black garlic and sepia ink. Lwt-Food Sci Technol 99:17–23. https://doi.org/10.1016/j.lwt.2018.09.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the NTU Center of High Field NMR Spectroscopy and Imaging and the Facility for Analysis, Characterization, Testing and Simulation (FACTS), for their support in ss 13C NMR experiments and electron microscopy analysis.

Funding

This research was supported by the Agency for Science, Technology and Research (A*STAR) under its Acne and Sebaceous Gland Program & Wound Care Innovation for the Tropics IAF-PP (Grant Nos. H17/01/a0/008 & H17/01/a0/0L9), the National Natural Science Foundation of China (Grant No. 51673087), and the China Scholarship Council (Grant No.201906790039 to N.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wang or Kee Woei Ng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Lai, H.Y., Gautam, A. et al. An Enzymatic Method for Harvesting Functional Melanosomes after Keratin Extraction: Maximizing Resource Recovery from Human Hair. J Polym Environ 30, 1045–1054 (2022). https://doi.org/10.1007/s10924-021-02246-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02246-8

Keywords

Navigation