Skip to main content
Log in

A Review: Valorization of Keratinous Materials

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present work was to discuss the current state-of-the-art in the methods of utilization of keratinous materials. Various approaches were discussed—thermal, physical, chemical and biological.

Results

Keratinous wastes can be used as the feedstock, however processing is required to valorize the waste. Among the processing methods, several hydrolytic technologies can be mentioned: hydrothermal methods, enzymatic hydrolysis, bioconversion. Chemical hydrolysis requires the step of neutralization and some nutritive amino acids are lost. Among hydrothermal methods which require high temperature and pressure conditions, acidic hydrolysis assures more complete degradation of keratin than basic. The obtained product can be used as low-quality livestock feed. Another method to obtain solubilized keratin is degradation by lime. More advantageous are enzymatic and bioconversion methods which assure milder conditions and preserve nutritional properties of the produced meal.

Conclusions

The hydrolyzate can be used as the source of amino acids and peptides in the production of feeds and fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daroit, D.J., Correa, P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodet. Biodegr. 63, 358–363 (2009)

    Article  Google Scholar 

  2. Vesela, M., Friedrich, J.: Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol. Bioprocess Eng. 14, 84–90 (2009)

    Article  Google Scholar 

  3. Moreira, F.G., de Souza, C.G.M., Costa, M.A.F., Reis, S., Peralta, R.M.: Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia 163, 153–160 (2007)

    Article  Google Scholar 

  4. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S.: A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technol 66, 1–11 (1998)

    Article  Google Scholar 

  5. Choi, J.M., Nelson, P.V.: Developing a slow-release nitrogen fertilizer from organic sources. 2. Using poultry feathers. J. Am. Soc. Horticul. Sci 121, 634–638 (1996)

    Google Scholar 

  6. Collins, S.N., Cope, B.C., Hopegood, L., Latham, R.J., Linford, R.G., Reilly, J.D.: Stiffness as a function of moisture content in natural materials: characterisation of hoof horn samples. J. Mater. Sci. 33, 5185–5191 (1998)

    Article  Google Scholar 

  7. Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A.: Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Tech. 126, 135–144 (2006)

    Article  Google Scholar 

  8. McLean, C.M., Koller, C.E., Rodger, J.C., MacFarlance, G.R.: Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments. Sci. Total Environ. 407, 3588–3596 (2009)

    Article  Google Scholar 

  9. Kurbanoglu, E.B.: Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger. Biores. Technol. 92, 97–101 (2004)

    Article  Google Scholar 

  10. Suzuki, Y., Tsujimoto, Y., Matsui, H., Watanabe, K.: Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J. Biosci. Bioeng. 102, 73–81 (2006)

    Article  Google Scholar 

  11. Coward-Kelly, G., Chang, V.S., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1 Chicken feathers. Bioresource Technol 97, 1337–1343 (2006)

    Article  Google Scholar 

  12. Tsuboi, Y., Kimoto, N., Kabeshita, M., Itaya, A.: Pulsed laser deposition of collagen and keratin. J. Photoch. Photob. C 145, 209–214 (2001)

    Article  Google Scholar 

  13. Tanabe, T., Okitsu, N., Yamauchi, Y.: Fabrication and characterization of chemically crosslinked keratin films. Mat. Sci. Eng. C 24, 441–446 (2004)

    Article  Google Scholar 

  14. Yamauchi, K., Yamauchi, A., Kusunoki, T., Kohda, A., Konishi, Y.: Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. 31, 439–444 (1996)

    Article  Google Scholar 

  15. Dalev, P., Neitchev, V.: Reactivity of alkaline proteinase to keratin and collagen containing substances. Appl. Biochem. Biotechnol. 27, 131–138 (1991)

    Article  Google Scholar 

  16. Gupta, R., Ramnani, P.: Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70, 21–33 (2006)

    Article  Google Scholar 

  17. Kida, K., Morimura, S., Noda, J.: Enzymatic hydrolysis of the horn and hoof of cow and buffalo. J. Ferment. Bioeng. 80, 478–484 (1995)

    Article  Google Scholar 

  18. Coward-Kelly, G., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. Animal hair. Biores. Technol. 97, 1344–1352 (2006)

    Article  Google Scholar 

  19. Bertsch, A., Coello, N.: A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores. Technol. 96, 1703–1708 (2005)

    Article  Google Scholar 

  20. Kumar, C.G., Takagi, H.: Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561–594 (1999)

    Article  Google Scholar 

  21. Balint, B., Bagi, Z., Toth, A., Rakhely, G., Perei, K., Kovacs, K.L.: Utilization of keratin-containing biowaste to produce biohydrogen. Appl. Microbiol. Biotechnol. 69, 404–410 (2005)

    Article  Google Scholar 

  22. El-Refai, H.A., AbdelNaby, M.A., Gaballa, A., El-Araby, M.H., Abdel-Fattah, A.F.: Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Proc. Biochem. 40, 2325–2332 (2005)

    Article  Google Scholar 

  23. Anwar, A., Saleemuddin, M.: Alkaline proteases: a review. Biores. Technol. 64, 175–183 (1998)

    Article  Google Scholar 

  24. Kurbanoglu, E.B., Kurbanoglu, N.I.: Production of citric acid from ram horn hydrolysate by Aspergillus niger. Proc. Biochem. 38, 1421–1424 (2003)

    Article  Google Scholar 

  25. Kurbanoglu, E.B., Kurbanoglu, N.I.: Utilization for lactic acid production with a new acid hydrolysis of ram horn waste. FEMS Microbiol. Lett. 225, 29–34 (2003)

    Article  Google Scholar 

  26. Kurbanoglu, E.B., Kurbanoglu, N.I.: Utilization as peptone for glycerol production of ram horn waste with a new process. Energ. Convers. Manag. 45, 225–234 (2004)

    Article  Google Scholar 

  27. Kurbanoglu, E.B.: Enhancement of glycerol production with ram horn hydrolysate by yeast. Energ. Convers. Manage. 44, 2125–2133 (2003)

    Article  Google Scholar 

  28. Kurbanoglu, E.B., Algur, O.F.: The influence of ram horn hydrolyzate on the crop yield of the mushroom Agaricus bisporus. Sci. Hortic. 94, 351–357 (2002)

    Article  Google Scholar 

  29. Kurbanoglu, E.B., Kurbanoglu, N.I.: A new process for the utilization as peptone of Ram Horn waste. J. Biosci. Bioeng. 94, 202–206 (2002)

    Article  Google Scholar 

  30. Kurbanoglu, E.B., Algur, O.F.: Single-cell protein production from ram horn hydrolysate by bacteria. Biores. Technol. 85, 125–129 (2002)

    Article  Google Scholar 

  31. Barrena, R., Pagans, E., Artola, A., Vazquez, F., Sanchez, A.: Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges. Biodegradation 18, 257–268 (2007)

    Article  Google Scholar 

  32. Endres, L., Mercier, H.: Amino acid uptake and profile in bromeliads with different habits cultivated in vitro. Plant Physiol. Biochem. 41, 181–187 (2003)

    Article  Google Scholar 

  33. Cahill, T.M., Anderson, D.W., Elbert, R.A., Perley, B.P., Johnson, D.R.: Elemental profiles in feather samples from a mercury-contaminated lake in Central California. Arch. Environ. Contam. Toxicol. 35, 75–81 (1998)

    Article  Google Scholar 

  34. Poole, A.J., Church, J.S., Mickey, G.: Huson environmentally sustainable fibers from regenerated protein. Biomacromolecules 10, 1–8 (2009)

    Article  Google Scholar 

  35. Daroit, D.J., Correa, P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodet. Biodegr. 63, 358–363 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Polish Ministry of Science and Higher Education—project nr N N204 019135, NR05-0008-06/2009, NR05-0014-10/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Chojnacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnacka, K., Górecka, H., Michalak, I. et al. A Review: Valorization of Keratinous Materials. Waste Biomass Valor 2, 317–321 (2011). https://doi.org/10.1007/s12649-011-9074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9074-6

Keywords

Navigation