Skip to main content

Keratin: An Introduction

  • Chapter
  • First Online:
Keratin as a Protein Biopolymer

Abstract

What is keratin? And why to use the keratin? Well known that protein is a part of every cell in living organism’s body which plays many different roles to keep living things alive and healthy. The importance of protein for the growth and repair of muscles, bones, skin, tendons, ligaments, hair, eyes, and other tissues is proven since a very long time. Proteins also exist in the form of enzymes and hormones needed for metabolism, digestion, and other important processes. Natural proteins are purified from natural sources. Keratin is among the most copious proteins found associated with the body of reptiles, birds, and mammals. It is a structural constituent of nail, wool, feathers, and hoofs which offers strength to body and muscles. Nowadays, the keratin-rich waste biomass produced from poultry and meat industry imposes serious threat to environment and living beings. We need to explore various techniques and methods for the extractions and use of keratin from waste biomass. From the industrial point of view, keratin is a useful product in the medical, pharmaceutical, cosmetic, and biotechnological industries. Materials obtained from keratin may be converted into porous foam of different sponges, shapes, coatings, mats, microfibers, gels, and materials of high molecular weight. In this chapter, we briefly describe the various sources, properties, and structures of keratin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acda MN (2010) Waste chicken feather as reinforcement in cement-bonded composites. Philippine J Sci 139(2):161–166

    Google Scholar 

  • Agrahari S, Wadhwa N (2010) Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping site at Ghazipur poultry processing plant. Int J Poult Sci 9(5):482–489

    Article  CAS  Google Scholar 

  • Alsarra IA (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45(1):16–21

    Article  CAS  PubMed  Google Scholar 

  • Aluigi A, Sotgiu G, Ferroni C, Duchi S, Lucarelli E, Martini C, Posati T, Guerrini A, Ballestri M, Corticelli F (2016) Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Adv 6(40):33910–33918

    Article  CAS  Google Scholar 

  • Amieva EJ-C, Fuentes-Ramirez R, Martinez-Hernandez A, Millan-Chiu B, Lopez-Marin LM, Castaño V, Velasco-Santos C (2014) Graphene oxide and reduced graphene oxide modification with polypeptide chains from chicken feather keratin. J Alloy Compd 643:S137–S143

    Google Scholar 

  • Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132(3):501–507

    Article  CAS  PubMed  Google Scholar 

  • Balakumar S, Mahesh N, Arunkumar M, Sivakumar R, Hemambujavalli V (2013) Optimization of keratinase production by keratinolytic organisms under submerged fermentation. Optimization 5(3):1294–1300

    CAS  Google Scholar 

  • Barati D, Kader S, Pajoum Shariati SR, Moeinzadeh S, Sawyer RH, Jabbari E (2017) Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18(2):398–412

    Article  CAS  PubMed  Google Scholar 

  • Barone JR, Dangaran K, Schmidt WF (2006a) Blends of cysteine-containing proteins. J Agric Food Chem 54(15):5393–5399

    Article  CAS  PubMed  Google Scholar 

  • Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65(2):173–181

    Article  CAS  Google Scholar 

  • Barone JR, Schmidt WF, Gregoire N (2006b) Extrusion of feather keratin. J Appl Polym Sci 100(2):1432–1442

    Article  CAS  Google Scholar 

  • Blanchard CR, Van Dyke ME, Timmons SF, Siller-Jackson AJ, Smith RA (2002) Non-woven keratin cell scaffold. Google Patents

    Google Scholar 

  • Breinl F, Baudisch O (1907) The oxidative breaking up of keratin through treatment with hydrogen peroxide. Z Physiol Chem 52:158–169

    Article  CAS  Google Scholar 

  • Bulaj G (2005) Formation of disulfide bonds in proteins and peptides. Biotechnol Adv 23(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Burnett LR, Rahmany MB, Richter JR, Aboushwareb TA, Eberli D, Ward CL, Orlando G, Hantgan RR, Van Dyke ME (2013) Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34(11):2632–2640

    Article  CAS  PubMed  Google Scholar 

  • Cardamone JM (2010) Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J Mol Struct 969(1):97–105

    Article  CAS  Google Scholar 

  • Cavello I, Cavalitto S, Hours R (2012) Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus. Appl Biochem Biotechnol 167(5):945–958

    Article  CAS  PubMed  Google Scholar 

  • Cevasco G, Chiappe C (2014) Are ionic liquids a proper solution to current environmental challenges? Green Chem 16(5):2375–2385

    Article  CAS  Google Scholar 

  • Chaudhari PN, Chincholkar SB, Chaudhari BL (2013) Biodegradation of feather keratin with a PEGylated protease of chryseobacterium gleum. Process Biochem 48(12):1952–1963. https://doi.org/10.1016/j.procbio.2013.09.011

    Article  CAS  Google Scholar 

  • Coulombe PA, Omary MB (2002) ‘Hard’and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14(1):110–122

    Article  CAS  PubMed  Google Scholar 

  • Coward-Kelly G, Agbogbo FK, Holtzapple MT (2006) Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. Animal hair. Bioresour Technol 97(11):1344–1352

    Article  CAS  PubMed  Google Scholar 

  • Dalev P, Ivanov I, Liubomirova A (1997) Enzymic modification of feather keratin hydrolysates with lysine aimed at increasing the biological value. J Sci Food Agric 73(2):242–244

    Article  CAS  Google Scholar 

  • Dalev P, Ljubomirova A, Simeonova L, Ivanov I (1996) Protein hydrolysates from waste feathers for feed and their enrichment with lysine trough enzyme catalyzed covalent binding. In: Mededelingen-faculteit landbouwkundige en toegepaste biologische wetenschappen, vol 61, pp 1641–1644

    Google Scholar 

  • Dalev PG (1994) Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Biores Technol 48(3):265–267

    Article  CAS  Google Scholar 

  • Datta M (1993) Role of keratin in fire fighting. J Ind Leath Technol Assoc 43:297–299

    Google Scholar 

  • Douglas J, Mittal C, Thomason J, Jofriet J (1996) The modulus of elasticity of equine hoof wall: implications for the mechanical function of the hoof. J Exp Biol 199(8):1829–1836

    CAS  PubMed  Google Scholar 

  • Earland C, Knight C (1956) Studies on the structure of keratin II. The amino acid content of fractions isolated from oxidized wool. Biochimica et Biophysica Acta 22(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Endo R, Kamei K, Iida I, Kawahara Y (2008) Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin. J Archaeol Sci 35(5):1240–1246

    Article  Google Scholar 

  • Eslahi N, Dadashian F, Nejad NH (2013) An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep Biochem Biotechnol 43(7):624–648

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhang J, Liu BH, Du GC, Chen J (2013) Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresource Technol 140:286–291. https://doi.org/10.1016/j.biortech.2013.04.091

    Article  CAS  Google Scholar 

  • Feughelman M, Robinson M (1971) Some mechanical properties of wool fibers in the “Hookean” region from zero to 100% relative humidity. Text Res J 41(6):469–474

    Article  Google Scholar 

  • Flores-Hernández CG, Colín-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, García-Casillas PE, Martínez-Hernández AL (2014) All green composites from fully renewable biopolymers: chitosan-starch reinforced with keratin from feathers. Polymers 6(3):686–705

    Article  CAS  Google Scholar 

  • Fraser R, MacRae T, Rogers GE (1972) Keratins: their composition, structure, and biosynthesis. Thomas, Charles C

    Google Scholar 

  • Fraser RDB, Parry DAD (2003) Macrofibril assembly in trichocyte (hard alpha-) keratins. J Struct Biol 142(2):319–325. https://doi.org/10.1016/S1047-8477(03)00027-3

    Article  CAS  PubMed  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme and Microbial Technology 32(5):519–524

    Article  CAS  Google Scholar 

  • Gousterova A, Nustorova M, Paskaleva D, Naydenov M, Neshev G, Vasileva-Tonkova E (2012) Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application. Int J Environ Res 6(2):467–474

    CAS  Google Scholar 

  • Grazziotin A, Pimentel FA, de Jong EV, Brandelli A (2006) Nutritional improvement of feather protein by treatment with microbial keratinase. Anim Feed Sci Tech 126(1–2):135–144. https://doi.org/10.1016/j.anifeedsci.2005.06.002

    Article  CAS  Google Scholar 

  • Gupta A, Kamarudin NB, Kee CYG, Yunus RBM (2012) Extraction of keratin protein from chicken feather. J Chem Chem Eng 6(8):732

    CAS  Google Scholar 

  • Gupta A, Perumal R (2013) Process for extracting keratin. Google Patents

    Google Scholar 

  • Gurav RG, Jadhav JP (2013) A novel source of biofertilizer from feather biomass for banana cultivation. Environ Sci Pollut R 20(7):4532–4539. https://doi.org/10.1007/s11356-012-1405-z

    Article  CAS  Google Scholar 

  • Hadas A, Kautsky L (1994) Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil Res 38(2):165–170

    Article  Google Scholar 

  • Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31(4):585–593. https://doi.org/10.1016/j.biomaterials.2009.09.076

    Article  CAS  PubMed  Google Scholar 

  • Huda S, Yang YQ (2008) Composites from ground chicken quill and polypropylene. Compos Sci Technol 68(3–4):790–798. https://doi.org/10.1016/j.compscitech.2007.08.015

    Article  CAS  Google Scholar 

  • Huda S, Yang YQ (2009) Feather fiber reinforced light-weight composites with good acoustic properties. J Polym Environ 17(2):131–142. https://doi.org/10.1007/s10924-009-0130-2

    Article  CAS  Google Scholar 

  • Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Meth 47(2):199–208. https://doi.org/10.1016/S0167-7012(01)00302-5

    Article  CAS  Google Scholar 

  • Idris A, Vijayaraghavan R, Patti A, MacFarlane D (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2(7):1888–1894

    Article  CAS  Google Scholar 

  • Innoe T (1992) Hair cosmetic for protection of skins. Eur Pat Appl, EP 469

    Google Scholar 

  • Jeong JH, Lee OM, Jeon YD, Kim JD, Lee NR, Lee CY, Son HJ (2010) Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem 45(10):1738–1745. https://doi.org/10.1016/j.procbio.2010.07.020

    Article  CAS  Google Scholar 

  • Jin E, Reddy N, Zhu Z, Yang Y (2011) Graft polymerization of native chicken feathers for thermoplastic applications. J Agr Food Chem 59(5):1729–1738

    Article  CAS  Google Scholar 

  • Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R (2017) Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech 7(2):127

    Google Scholar 

  • Kaplin I (1982) Effect of cosmetic treatments on the ultrastructure of hair. Cosmet Toiletries 97(8):22–26

    CAS  Google Scholar 

  • Karthikeyan R, Balaji S, Sehgal P (2007) Industrial applications of keratins—a review. J Sci Ind Res 66(9):710

    CAS  Google Scholar 

  • Khajavi R, Rahimi MK, Abbasipour M, Brendjchi AH (2016) Antibacterial nanofibrous scaffolds with lowered cytotoxicity using keratin extracted from quail feathers. J Bioact Compat Polym 31(1):60–71

    Article  CAS  Google Scholar 

  • Khosa MA, Wu J, Ullah A (2013) Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv 3(43):20800–20810

    Article  CAS  Google Scholar 

  • Kim J-D (2007) Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus strain K-03. Mycobiology 35(4):219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornillowicz-Kowalska T, Bohacz J (2010) Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste. Bioresource Technol 101(4):1268–1276. https://doi.org/10.1016/j.biortech.2009.09.053

    Article  CAS  Google Scholar 

  • Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31(8):1689–1701

    Article  PubMed  CAS  Google Scholar 

  • Korol J (2012) Polyethylene matrix composites reinforced with keratin fibers obtained from waste chicken feathers. J Biob Mater Bio 6(4):355–360. https://doi.org/10.1166/jbmb.2012.1237

    Article  CAS  Google Scholar 

  • Kumar SL, Anandhavelu S, Sivaraman J, Swathy M (2017) Modified extraction and characterization of keratin from Indian goat hoof: a biocompatible biomaterial for tissue regenerative applications. Integr Ferroelectr 184(1):41–49

    Article  CAS  Google Scholar 

  • Kumaran P, Gupta A, Sharma S (2016) Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. 2016:8. https://doi.org/10.22159/ijpps.2017v9i2.15620

    Article  CAS  Google Scholar 

  • Kunert J (2000) Physiology of keratinophilic fungi. Revista Iberoamericana de Micologia 1:77–85

    Google Scholar 

  • Lee L, Baden H (1975) Chemistry and composition of the keratins. Int J Dermatol 14(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Li J-S, Li Y, Liu X, Zhang J, Zhang Y (2013) Strategy to introduce an hydroxyapatite–keratin nanocomposite into a fibrous membrane for bone tissue engineering. J Mater Chem B 1(4):432–437

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhi X, Lin J, You X, Yuan J (2017) Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng, C 73:189–197

    Article  CAS  Google Scholar 

  • Lipkowski AW, Gajkowska B, Grabowska A, Kurzepa K (2009) Keratin-associated protein micromaterials for medical and cosmetic applications. Polimery 54(5):386–388

    CAS  Google Scholar 

  • Luo T, Hao S, Chen X, Wang J, Yang Q, Wang Y, Weng Y, Wei H, Zhou J, Wang B (2016) Development and assessment of kerateine nanoparticles for use as a hemostatic agent. Mater Sci Eng, C 63:352–358

    Article  CAS  Google Scholar 

  • Manivasagan P, Sivakumar K, Gnanam S, Venkatesan J, Kim S-K (2014) Production, biochemical characterization and detergents application of keratinase from the marine actinobacterium Actinoalloteichus sp. MA-32. J Surfactants Deterg 17 (4):669–682

    Article  CAS  Google Scholar 

  • Matsunaga K, Okumura T, Tsushima R (1983) Hair treatment cosmetics containing cationic keratin derivatives. Google Patents

    Google Scholar 

  • McKittrick J, Chen P-Y, Bodde S, Yang W, Novitskaya E, Meyers M (2012) The structure, functions, and mechanical properties of keratin. JOM 64(4):449–468

    Article  Google Scholar 

  • Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83(8):1084–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol 66(1):1–11

    Article  CAS  Google Scholar 

  • Park M, Kim B-S, Shin HK, Park S-J, Kim H-Y (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng, C 33(8):5051–5057

    Article  CAS  Google Scholar 

  • Paul T, Halder SK, Das A, Bera S, Maity C, Mandal A, Das PS, Mohapatra PKD, Pati BR, Mondal KC (2013) Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal Agric Biotechnol 2(1):50–57

    Article  Google Scholar 

  • Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10(1):1–8

    Article  CAS  Google Scholar 

  • Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10(1):1–8. https://doi.org/10.1021/bm8010648

    Article  CAS  PubMed  Google Scholar 

  • Priyaah K, Gupta A, Sharma S (2017) Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. Int J Pharm Pharm Sci 9(2):171–178

    Article  CAS  Google Scholar 

  • Rad ZP, Tavanai H, Moradi A (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56

    Article  CAS  Google Scholar 

  • Rai SK, Konwarh R, Mukherjee AK (2009) Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem Eng J 45(3):218–225

    Article  CAS  Google Scholar 

  • Ramadass SK, Perumal S, Jabaris SL, Madhan B (2013) Preparation and evaluation of mesalamine collagen in situ rectal gel: a novel therapeutic approach for treating ulcerative colitis. Eur J Pharm Sci 48(1):104–110

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan N, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol

    Google Scholar 

  • Ramshaw JA, Peng YY, Glattauer V, Werkmeister JA (2009) Collagens as biomaterials. J Mater Sci - Mater Med 20(1):3

    Article  CAS  Google Scholar 

  • Reddy N, Chen L, Zhang Y, Yang Y (2014a) Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly (vinyl alcohol). J Clean Prod 65:561–567

    Article  CAS  Google Scholar 

  • Reddy N, Jiang QR, Jin EQ, Shi Z, Hou XL, Yang YQ (2013) Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloid Surf B 110:51–58. https://doi.org/10.1016/j.colsurfb.2013.04.019

    Article  CAS  Google Scholar 

  • Reddy N, Shi Z, Temme L, Xu H, Xu L, Hou X, Yang Y (2014b) Development and characterization of thermoplastic films from sorghum distillers dried grains grafted with various methacrylates. J Agr Food Chem 62(11):2406–2411

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2007a) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15(2):81–87

    Article  CAS  Google Scholar 

  • Reddy N, Yang YQ (2007b) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15(2):81–87. https://doi.org/10.1007/s10924-007-0054-7

    Article  CAS  Google Scholar 

  • Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32(13):3375–3386

    Article  CAS  PubMed  Google Scholar 

  • Rizvi TZ, Khan MA (2008) Temperature-dependent dielectric properties of slightly hydrated horn keratin. Int J Biol Macromol 42(3):292–297. https://doi.org/10.1016/j.ijbiomac.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014

    Article  PubMed Central  Google Scholar 

  • Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain kr2. J Appl Microbiol 89(5):735–743

    Article  CAS  PubMed  Google Scholar 

  • Saravanan S, Sameera D, Moorthi A, Selvamurugan N (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486

    Article  CAS  PubMed  Google Scholar 

  • Sastry T, Sehgal P, Gupta K, Kumar M (1986) Solubilised keratins as a filler in the retanning of upper leathers. Leather Sci 33:345

    CAS  Google Scholar 

  • Schmidt W, Jayasundera S (2003) In: Wallenberger F, Weston N (eds) Natural fibers plastics, and composites-recent advances. Kluwer Academic: USA

    Google Scholar 

  • Schmidt WF, Jayasundera S. (2004) Microcrystalline Avian Keratin Protein Fibers. In: Wallenberger FT, Weston NE (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA

    Chapter  Google Scholar 

  • Schrooyen PM, Dijkstra PJ, Oberthür RC, Bantjes A, Feijen J (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48(9):4326–4334

    Article  CAS  PubMed  Google Scholar 

  • Secchi G (2008) Role of protein in cosmetics. Clin Dermatol 26(4):321–325

    Article  PubMed  Google Scholar 

  • Sehgal P, Sastry T, Kumar M (1987) Effect of keratin filler in retanning of nappa garment leathers. Leather Sci 34(1)

    Google Scholar 

  • Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59

    Google Scholar 

  • Sharma S, Gupta A, Chik SMS, Kee CG, Mistry BM, Kim DH, Sharma G (2017a) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Gupta A, Chik SMSBT, Kee CYG, Poddar PK (2017b) Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012013

    Google Scholar 

  • Sharma S, Gupta A, Chik SMST, Kee CYG, Podder PK, Subramaniam M, Thuraisingam J (2017c) Study of different treatment methods on chicken feather biomass. IIUM Eng J 18(2):47–55

    Article  Google Scholar 

  • Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy 1–11

    Google Scholar 

  • Shi Z, Reddy N, Hou XL, Yang YQ (2014) Tensile properties of thermoplastic feather films grafted with different methacrylates. ACS Sustain Chem Eng 2(7):1849–1856. https://doi.org/10.1021/sc500201q

    Article  CAS  Google Scholar 

  • Sionkowska A (2015) The potential of polymers from natural sources as components of the blends for biomedical and cosmetic applications. Pure Appl Chem 87(11–12):1075–1084

    Article  CAS  Google Scholar 

  • Song N-B, Jo W-S, Song H-Y, Chung K-S, Won M, Song KB (2013) Effects of plasticizers and nano-clay content on the physical properties of chicken feather protein composite films. Food Hydrocolloids 31(2):340–345

    Article  CAS  Google Scholar 

  • Spiridon I, Paduraru OM, Rudowski M, Kozlowski M, Darie RN (2012) Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites. Ind Eng Chem Res 51(21):7279–7286. https://doi.org/10.1021/ie300738d

    Article  CAS  Google Scholar 

  • Staroń P, Banach M, Kowalski Z, Staroń A (2014) Hydrolysis of keratin materials derived from poultry industry. In: Proceedings of ECOpole 8

    Google Scholar 

  • Sun P, Liu Z-T, Liu Z-W (2009a) Particles from bird feather: a novel application of an ionic liquid and waste resource. J Hazard Mater 170(2):786–790

    CAS  PubMed  Google Scholar 

  • Sun P, Liu ZT, Liu ZW (2009b) Particles from bird feather: a novel application of an ionic liquid and waste resource. J Hazard Mater 170(2–3):786–790. https://doi.org/10.1016/j.jhazmat.2009.05.034

    Article  CAS  PubMed  Google Scholar 

  • Sundaram M, Legadevi R, Banu NA, Gayathri V, Palanisammy A (2015) A study on anti bacterial activity of keratin nanoparticles from chicken feather waste against Staphylococcus aureus (Bovine Mastitis Bacteria) and its anti oxidant activity. Eur J Biotechnol Biosci 6:1–5

    Google Scholar 

  • Syed DG, Lee JC, Li WJ, Kim CJ, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresource Technol 100(5):1868–1871. https://doi.org/10.1016/j.biortech.2008.09.047

    Article  CAS  Google Scholar 

  • Teresa KK, Justyna B (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manage 31(8):1689–1701. https://doi.org/10.1016/j.wasman.2011.03.024

    Article  CAS  Google Scholar 

  • Tesfaye T, Sithole B, Ramjugernath D, Chunilall V (2017) Valorisation of chicken feathers: application in paper production. J Clean Prod 164:1324–1331

    Article  CAS  Google Scholar 

  • Tombolato L, Novitskaya EE, Chen P-Y, Sheppard FA, McKittrick J (2010) Microstructure, elastic properties and deformation mechanisms of horn keratin. Acta Biomater 6(2):319–330

    Article  CAS  PubMed  Google Scholar 

  • Tran CD, Prosenc F, Franko M, Benzi G (2016) One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity. ACS Appl Mater Interfaces

    Google Scholar 

  • Tsuda Y, Nomura Y (2014) Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim Sci J 85(2):180–185

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Vasanthan T, Bressler D, Elias AL, Wu J (2011) Bioplastics from feather quill. Biomacromolecules 12(10):3826–3832

    Article  CAS  PubMed  Google Scholar 

  • Vasileva-Tonkova E, Gousterova A, Neshev G (2009) Ecologically safe method for improved feather wastes biodegradation. Int Biodeter Biodegr 63(8):1008–1012. https://doi.org/10.1016/j.ibiod.2009.07.003

    Article  CAS  Google Scholar 

  • Velasco MVR, Dias TCdS, Freitas AZd, Júnior NDV, Pinto CASdO, Kaneko TM, Baby AR (2009) Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Braz J Pharm Sci 45(1):153–162

    Article  Google Scholar 

  • Wagner RdCC, Joekes I (2005) Hair protein removal by sodium dodecyl sulfate. Colloids Surf, B 41(1):7–14

    Article  CAS  Google Scholar 

  • Wallenberger FT, Weston N (2003) Natural fibers, plastics and composites. Springer Science & Business Media,

    Google Scholar 

  • Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf, B 149:341–350

    Article  CAS  Google Scholar 

  • Wang J, Hao S, Luo T, Yang Q, Wang B (2016) Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. Mater Sci Eng, C 68:768–773

    Article  CAS  Google Scholar 

  • Wang XY, Lu CQ, Chen CX (2014) Effect of chicken-feather protein-based flame retardant on flame retarding performance of cotton fabric. J Appl Polym Sci 131(15). https://doi.org/10.1002/app.40584

    Google Scholar 

  • Wang Y-X, Cao X-J (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47(5):896–899

    Article  CAS  Google Scholar 

  • Weigmann H, Kamath Y, Ruetsch S (1990) Characterization ofsurface deposits on human hair fibers. J Soc Cosmet Chem 41:379–390

    CAS  Google Scholar 

  • Xu H, Cai S, Xu L, Yang Y (2014a) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30(28):8461–8470

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Shi Z, Reddy N, Yang Y (2014b) Intrinsically water-stable keratin nanoparticles and their in vivo biodistribution for targeted delivery. J Agric Food Chem 62(37):9145–9150

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Morita Y, Hasan Q, Yokoyama K, Tamiya E (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294(5):1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Yamini Satyawali SS (2013) Enzymatic electrosynthesis: an overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol. https://doi.org/10.4172/1948-5948.s6-007

  • Yang YQ, Reddy N (2013) Potential of using plant proteins and chicken feathers for cotton warp sizing. Cellulose 20(4):2163–2174. https://doi.org/10.1007/s10570-013-9956-9

    Article  CAS  Google Scholar 

  • Yin J, Rastogi S, Terry AE, Popescu C (2007) Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water. Biomacromolecules 8(3):800–806

    Article  CAS  PubMed  Google Scholar 

  • Yin XC, Li FY, He YF, Wang Y, Wang RM (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci-UK 1(5):528–536. https://doi.org/10.1039/c3bm00158j

    Article  CAS  Google Scholar 

  • Yu D, Cai JY, Liu X, Church JS, Wang L (2014) Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications. Int J Biol Macromol 70:236–240

    Article  CAS  PubMed  Google Scholar 

  • Zhan M, Wool RP (2011) Mechanical properties of chicken feather fibers. Polym Compos 32(6):937–944

    Article  CAS  Google Scholar 

  • Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 124(5):867–876

    Article  CAS  PubMed  Google Scholar 

  • Zoccola M, Aluigi A, Tonin C (2009) Characterisation of keratin biomass from butchery and wool industry wastes. J Mol Struct 938(1–3):35–40. https://doi.org/10.1016/j.molstruc.2009.08.036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Gupta, A., Kumar, A. (2019). Keratin: An Introduction. In: Sharma, S., Kumar, A. (eds) Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02901-2_1

Download citation

Publish with us

Policies and ethics