Skip to main content

Advertisement

Log in

Effect of Environmental Weathering on Biodegradation of Biodegradable Plastic Mulch Films under Ambient Soil and Composting Conditions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastic mulch films contribute to better crop production. Concerns for lack of sustainable disposal methods for conventional polyethylene (PE) mulch led to development of biodegradable plastic mulches (BDMs) that can be soil-incorporated or composted after use. Environmental weathering of BDMs during crop growth reduces their mechanical strength and alters the molecular structure of their polymeric components. However, the impact of weathering on BDMs’ biodegradability is not fully understood. The biodegradability of agriculturally weathered and unweathered BDMs in soil and compost was compared using standardized laboratory tests (ASTM D5988 and D5338) using four BDMs (experimental polylactic acid and polyhydroxyalkanoate-based film [PLA/PHA] and three commercially available polybutyrate [PBAT]-based BDMs). In soil, biodegradation of weathered PLA/PHA was greater than its unweathered counterpart. For PBAT-based BDMs, the extent of biodegradation varied. A decrease of the weight-averaged molecular weight (Mw) of PBAT and PLA and thermostability of PLA, PHA, PBAT, and starch components was observed during biodegradation in the soil. The proportion of the minor components PHA and starch decreased during biodegradation, indicating preferential utilization of PHA over PLA and starch over PBAT by microbes. Bacterial abundance was significantly higher than fungal abundance in soil and was more prominent in soil adjacent to weathered than unweathered BDM treatments. Under composting conditions, unweathered PBAT-enriched mulches yielded higher CO2 evolution than their weathered counterpart. Together, these results suggest that environmental weathering enhances biodegradation of BDMs and mulch’s polymeric constituents also influence the microbial degradation, more so for bacterial than fungal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available at https://doi.org/10.5061/dryad.2v6wwpzmh.

References

  1. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150. https://doi.org/10.1007/s10924-007-0053-8

    Article  CAS  Google Scholar 

  2. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manage Res 35:132–140. https://doi.org/10.1177/0734242X16683272

    Article  Google Scholar 

  3. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Chiellini E, Solaro R (1997) Biodegradable polymers and plastics. Springer, Boston

    Google Scholar 

  5. Hayes DG, Anunciado MB, DeBruyn JM et al (2019) Biodegradable plastic mulch films for sustainable specialty crop production. In: Gutiérrez TJ (ed) Polymers for agri-food applications. Springer International Publishing, Cham, pp 183–213

    Chapter  Google Scholar 

  6. Touchaleaume F, Martin-Closas L, Angellier-Coussy H et al (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439. https://doi.org/10.1016/j.chemosphere.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  7. Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99:1039–1056. https://doi.org/10.1007/s00253-014-6267-5

    Article  CAS  PubMed  Google Scholar 

  8. Miles C, DeVetter L, Ghimire S, Hayes DG (2017) Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience 52:10–15. https://doi.org/10.21273/hortsci11249-16

    Article  CAS  Google Scholar 

  9. Malinconico M (2017) Soil degradable bioplastics for a sustainable modern agriculture. Springer, New York

    Book  Google Scholar 

  10. European Standard ECfS. (2018) EN 17033 - Plastics-Biodegradable mulch films for use in agriculture and horticultureRequirements and test methods. Brussels

  11. Gómez EF, Michel FC Jr (2013) Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym Degrad Stab 98:2583–2591. https://doi.org/10.1016/j.polymdegradstab.2013.09.018

    Article  CAS  Google Scholar 

  12. Vieyra H, San Martín-Martínez E, Juárez E et al (2015) Biodegradation process of a blend of thermoplastic unripe banana flour—polyethylene under composting: Identification of the biodegrading agent. J Appl Polymer Sci. https://doi.org/10.1002/app.42258

    Article  Google Scholar 

  13. ASTM International (2004) Standard specification for compostable plastics (ASTM D6400)

  14. ASTM International (2011) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions (ASTM D5338)

  15. Barragan DH, Pelacho AM, Martin-Closas L (2016) Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Res 54:216

    Article  CAS  Google Scholar 

  16. Dharmalingam S, Hayes DG, Wadsworth LC et al (2015) soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23:302–315. https://doi.org/10.1007/s10924-015-0716-9

    Article  CAS  Google Scholar 

  17. Kijchavengkul T, Auras R, Rubino M et al (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  18. Kijchavengkul T, Auras R, Rubino M et al (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere 71:1607–1616. https://doi.org/10.1016/j.chemosphere.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  19. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  PubMed  Google Scholar 

  20. Copinet A, Bertrand C, Govindin S et al (2004) Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55:763–773. https://doi.org/10.1016/j.chemosphere.2003.11.038

    Article  CAS  PubMed  Google Scholar 

  21. Hablot E, Dharmalingam S, Hayes DG et al (2014) Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J Polym Environ 22:417–429. https://doi.org/10.1007/s10924-014-0697-0

    Article  CAS  Google Scholar 

  22. Hayes DG, Wadsworth LC, Sintim HY et al (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Testing 62:454–467. https://doi.org/10.1016/j.polymertesting.2017.07.027

    Article  CAS  Google Scholar 

  23. Li C, Moore-Kucera J, Miles C et al (2014) Degradation of potentially biodegradable plastic mulch films at three diverse U.S. Locations. Agroecol Sustain Food Syst 38:861–889. https://doi.org/10.1080/21683565.2014.884515

    Article  Google Scholar 

  24. Chinaglia S, Tosin M, Degli-Innocenti F (2018) Biodegradation rate of biodegradable plastics at molecular level. Polym Degrad Stab 147:237–244

    Article  CAS  Google Scholar 

  25. Kijchavengkul T, Auras R, Rubino M et al (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere 71:942–953. https://doi.org/10.1016/j.chemosphere.2007.10.074

    Article  CAS  PubMed  Google Scholar 

  26. De Hoe GX, Zumstein MT, Getzinger GJ et al (2019) Photochemical transformation of poly(butylene adipate-co-terephthalate) and its effects on enzymatic hydrolyzability. Environ Sci Technol 53:2472–2481. https://doi.org/10.1021/acs.est.8b06458

    Article  CAS  PubMed  Google Scholar 

  27. Tosin M, Pischedda A, Degli-Innocenti F (2019) Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polym Degrad Stab 166:213–218

    Article  CAS  Google Scholar 

  28. Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN (2016) Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text Res J 86:1343–1355. https://doi.org/10.1177/0040517515612358

    Article  CAS  Google Scholar 

  29. Anunciado MB, Hayes DG, Wadsworth LC et al (2021) Impact of agricultural weathering on physicochemical properties of biodegradable plastic mulch films: comparison of two diverse climates over four successive years. J Polym Environ 29:1–16. https://doi.org/10.1007/s10924-020-01853-1

    Article  CAS  Google Scholar 

  30. ASTM International (2003), Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic Materials or Residual Plastic Materials after Composting (ASTM D5988)

  31. Cedar Grove Composting Inc. In: Cedar Grove Composting Inc. https://cedar-grove.com. Accessed 23 Jan 2021

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  33. Ghimire S, Wszelaki AL, Moore JC et al (2018) The use of biodegradable mulches in pie pumpkin crop production in two diverse climates. HortScience 53:288–294. https://doi.org/10.21273/HORTSCI12630-17

    Article  CAS  Google Scholar 

  34. Moore JC, Wszelaki AL (2019) The use of biodegradable mulches in pepper production in the Southeastern United States. HortScience 54:1031–1038. https://doi.org/10.21273/HORTSCI13942-19

    Article  CAS  Google Scholar 

  35. Sintim HY, Bandopadhyay S, English ME et al (2019) Impacts of biodegradable plastic mulches on soil health. Agr Ecosyst Environ 273:36–49. https://doi.org/10.1016/j.agee.2018.12.002

    Article  CAS  Google Scholar 

  36. Sintim HY, Bandopadhyay S, English ME et al (2021) Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma 381:114665. https://doi.org/10.1016/j.geoderma.2020.114665

    Article  CAS  Google Scholar 

  37. Bernal MP, Sommer SG, Chadwick D, et al (2017) Chapter three-current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 143–233

  38. Team RC (2018) R version 3.5. 0. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna

  39. Astner AF, Hayes DG, O’Neill H et al (2019) Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. Sci Total Environ 685:1097–1106. https://doi.org/10.1016/j.scitotenv.2019.06.241

    Article  CAS  PubMed  Google Scholar 

  40. Eitzen L, Paul S, Braun U et al (2019) The challenge in preparing particle suspensions for aquatic microplastic research. Environ Res 168:490–495. https://doi.org/10.1016/j.envres.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  41. Zumstein MT, Schintlmeister A, Nelson TF et al (2018) Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Science Advances. https://doi.org/10.1126/sciadv.aas9024

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang M, Zhao Y, Qin X et al (2019) Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 688:470–478. https://doi.org/10.1016/j.scitotenv.2019.06.108

    Article  CAS  PubMed  Google Scholar 

  43. Bandopadhyay S, Sintim HY, DeBruyn JM (2020) Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ 8:e9015. https://doi.org/10.7717/peerj.9015

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang M, Jia H, Weng Y, Li C (2019) Biodegradable PLA/PBAT mulch on microbial community structure in different soils. Int Biodeterior Biodegrad 145:104817. https://doi.org/10.1016/j.ibiod.2019.104817

    Article  CAS  Google Scholar 

  45. Bandopadhyay S, Martin-Closas L, Pelacho AM, DeBruyn JM (2018) Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00819

    Article  PubMed  PubMed Central  Google Scholar 

  46. Muroi F, Tachibana Y, Kobayashi Y et al (2016) Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym Degrad Stab 129:338–346. https://doi.org/10.1016/j.polymdegradstab.2016.05.018

    Article  CAS  Google Scholar 

  47. Rychter P, Biczak R, Herman B et al (2006) Environmental degradation of polyester blends containing atactic poly(3-hydroxybutyrate). biodegradation in soil and ecotoxicological impact. Biomacromol 7:3125–3131. https://doi.org/10.1021/bm060708r

    Article  CAS  Google Scholar 

  48. Bandopadhyay S, Liquet y González JE, Henderson KB et al (2020) Soil microbial communities associated with biodegradable plastic mulch films. Front Microbiol 11:587074. https://doi.org/10.3389/fmicb.2020.587074

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koitabashi M, Noguchi MT, Sameshima-Yamashita Y et al (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:1–10

    Article  Google Scholar 

  50. Morro A, Catalina F, Sanchez-León E, Abrusci C (2019) Photodegradation and biodegradation under thermophile conditions of mulching films based on poly(butylene adipate- co -terephthalate) and its blend with poly(lactic acid). J Polym Environ 27:352–363. https://doi.org/10.1007/s10924-018-1350-0

    Article  CAS  Google Scholar 

  51. Kimura M, Toyota K, Iwatsuki M, Sawada H (1994) Effects of soil conditions on biodegradation of plastics and responsible microorganisms. In: Studies in Polymer Science. Elsevier, pp 92–106

  52. Nakayama A, Kawasaki M, Arvanitoyannis I, Yamamoto N (1994) Biodegradability of Poly (L/DL-Lactide-co-DL-β-Methyl-δ-valeroiactone). In: Studies in Polymer Science. Elsevier, pp 557–561

  53. Rudeekit Y, Numnoi J, Tajan M et al (2008) Determining biodegradability of polylactic acid under different environments. J Met Mater Miner 18:83–87

    Google Scholar 

  54. Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57:793–804. https://doi.org/10.1002/pi.2420

    Article  CAS  Google Scholar 

  55. Castro-Aguirre E, Auras R, Selke S et al (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stab 137:251–271. https://doi.org/10.1016/j.polymdegradstab.2017.01.017

    Article  CAS  Google Scholar 

  56. Bregg RK (2006) New Frontiers in Polymer Research. Nova Science Publishers

  57. Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manage 31:1153–1161. https://doi.org/10.1016/j.wasman.2010.12.011

    Article  CAS  Google Scholar 

  58. Funabashi M, Ninomiya F, Kunioka M (2009) Biodegradability Evaluation of Polymers by ISO 14855-2. Int J Mol Sci 10:3635

    Article  CAS  Google Scholar 

  59. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate- co -terephthalate)s. J Polym Sci, Part A: Polym Chem 40:4141–4157. https://doi.org/10.1002/pola.10501

    Article  CAS  Google Scholar 

  60. Souza P, Coelho F, Sommaggio L et al (2019) Disintegration and biodegradation in soil of PBAT mulch films: influence of the stabilization systems based on carbon black/hindered amine light stabilizer and carbon black/vitamin E. J Polym Environ 27:1584–1594. https://doi.org/10.1007/s10924-019-01455-6

    Article  CAS  Google Scholar 

  61. Stloukal P, Verney V, Commereuc S et al (2012) Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 88:1214–1219. https://doi.org/10.1016/j.chemosphere.2012.03.072

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Organix Solutions (Maple Grove, MN, USA), Custom Bioplastics (Burlington, WA, USA), (Metabolix Inc. (Cambridge, MA, USA), and Sunshine Paper Co. (Aurora, CO, USA) and DuBois Agrinovation (Saint-Rémi, QC, Canada) for the kind donation of mulch films to our study.

Funding

We gratefully acknowledge financial support from the USDA Specialty Crops Research Initiative (Award 2014-51181- 22382).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and were involved with the retrieval of mulch specimen from our ongoing field studies. MBA performed the biodegradation experiment in compost, assisted by CDCB on biodegradation experiment in the soil. AFA performed the microscopy and microplastics assessment. MBA and LCW performed the measurements of the chemical properties of the mulches. JMD and JELG performed the microbial assessment and its statistical analysis. MBA performed other statistical analysis while MBA, DGH, and LCW analyzed other data. MBA and DGH wrote the first draft of the manuscript and all authors commented on the previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Douglas G. Hayes.

Ethics declarations

Conflicts of interest

We have no conflicts of interest or competing interests to declare.

Consent to Participate and for Publication

All authors have provided consent to participate and to pursue publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anunciado, M.B., Hayes, D.G., Astner, A.F. et al. Effect of Environmental Weathering on Biodegradation of Biodegradable Plastic Mulch Films under Ambient Soil and Composting Conditions. J Polym Environ 29, 2916–2931 (2021). https://doi.org/10.1007/s10924-021-02088-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02088-4

Keywords

Navigation