Skip to main content
Log in

Silver Nanoparticles Embedded in Gelatin Biopolymer Hydrogel as Catalyst for Reductive Degradation of Pollutants

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present article, a facile method for the self-synthesis of silver nanoparticles without the use of reducing agent in a gelatin biopolymer hydrogel and its utilization as a catalyst for the pollutants reduction reactions is demonstrated. We first synthesized different wt% of the gelatin aqueous solutions at high temperature followed by crosslinking with formaldehyde solution. Among the three different wt% of the gelatin hydrogels, we found that the 8% hydrogel was suitable for this study. The hydrogel was immersed in a 10 mM AgNO3 aqueous solution for three days, after which, the gelatin hydrogel changed its color from transparent to brown color indicating the self-formation of the silver nanoparticles inside the gelatin hydrogel (Ag-GL). Importantly, the formation of the nanoparticles did not require any reductant by using this method. The successful preparation of the Ag-GL was confirmed by FESEM, XRD, EDX and TGA analyses. The Ag-GL was tested as catalyst in the reduction reactions of the methyl orange (MO) and 4-nitrophenol (4-NP). Both of these reactions were progressed with high rate constants (kapp = 0.966 min−1 for MO and 0.621 min−1 for 4-NP were observed). In addition, we discussed the mechanism, influence of the reductant and recyclability of the Ag-GL on the kapp of the both reduction reactions.

Graphic Abstract

Ag nanoparticles were self-synthesized inside a gelatin biopolymer hydrogel without using the harsh chemicals, which were used as hydrogel reactor for hydrogenation of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed MS, Kamal T, Khan SA, Anwar Y, Saeed MT, Asiri AM, Khan SB (2016) Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr Nanosci 12:569–575. https://doi.org/10.2174/1573413712666160204000517

    Article  CAS  Google Scholar 

  2. Kamal T, Khan SB, Haider S, Alghamdi YG, Asiri AM (2017) Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int J Biol Macromol 104:56–62. https://doi.org/10.1016/j.ijbiomac.2017.05.157

    Article  CAS  PubMed  Google Scholar 

  3. Khan SA, Khan SB, Kamal T, Yasir M, Asiri AM (2016) Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int J Biol Macromol 91:744–751. https://doi.org/10.1016/j.ijbiomac.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  4. Taira N, Ino K, Robert J, Shiku H (2018) Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochim Acta 281:429–436. https://doi.org/10.1016/j.electacta.2018.05.124

    Article  CAS  Google Scholar 

  5. Ghosh SK, Das A, Basu A, Halder A, Das S, Basu S, Abdullah MdF, Mukherjee A, Kundu S (2018) Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int J Biol Macromol 120:1823–1833. https://doi.org/10.1016/j.ijbiomac.2018.09.212

    Article  CAS  PubMed  Google Scholar 

  6. Liu W-C, Wang H-Y, Lee T-H, Chung R-J (2019) Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater Sci Eng C 101:630–639. https://doi.org/10.1016/j.msec.2019.04.018

    Article  CAS  Google Scholar 

  7. Ofokansi KC, Ibezim C, Okorie O (2011) Preparation and evaluation of gelatin-based disc matrices for the delivery of isoniazid. Niger J Pharm Res 9:1–14

    Google Scholar 

  8. Anwar N, Shah M, Saleem S, Rahman H (2018) Plant mediated synthesis of silver nanoparticles and their biological applications. Bull Chem Soc Ethiop 32:469–479

    Article  CAS  Google Scholar 

  9. Kamal T (2017) High performance NiO decorated graphene as a potential H2 gas sensor. J Alloys Compd 729:1058–1063. https://doi.org/10.1016/j.jallcom.2017.09.124

    Article  CAS  Google Scholar 

  10. Kamal T, Ahmad I, Khan SB, Asiri AM (2017) Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr Polym 157:294–302. https://doi.org/10.1016/j.carbpol.2016.09.078

    Article  CAS  PubMed  Google Scholar 

  11. Kamal T, Anwar Y, Khan SB, Chani MTS, Asiri AM (2016) Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr Polym 148:153–160. https://doi.org/10.1016/j.carbpol.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  12. Kamal T, Ul-Islam M, Khan SB, Asiri AM (2015) Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol 81:584–590. https://doi.org/10.1016/j.ijbiomac.2015.08.060

    Article  CAS  PubMed  Google Scholar 

  13. Kavitha T, Haider S, Kamal T, Ul-Islam M (2017) Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J Alloys Compd 704:296–302. https://doi.org/10.1016/j.jallcom.2017.01.306

    Article  CAS  Google Scholar 

  14. Kavitha T, Kumar S, Prasad V, Asiri AM, Kamal T, Ul-Islam M (2019) NiO powder synthesized through nickel metal complex degradation for water treatment. Desalin Water Treat 155:216

    Article  CAS  Google Scholar 

  15. Haider A, Haider S, Kang I-K, Kumar A, Kummara MR, Kamal T, Han SS (2018) A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int J Biol Macromol 108:455–461. https://doi.org/10.1016/j.ijbiomac.2017.12.022

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad I, Khan SB, Kamal T, Asiri AM (2017) Visible light activated degradation of organic pollutants using zinc–iron selenide. J Mol Liq 229:429–435. https://doi.org/10.1016/j.molliq.2016.12.061

    Article  CAS  Google Scholar 

  17. Haider S, Kamal T, Khan SB, Omer M, Haider A, Khan FU, Asiri AM (2016) Natural polymers supported copper nanoparticles for pollutants degradation. Appl Surf Sci 387:1154–1161. https://doi.org/10.1016/j.apsusc.2016.06.133

    Article  CAS  Google Scholar 

  18. Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM (2018) Chitosan-titanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep 8:6260. https://doi.org/10.1038/s41598-018-24311-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramazani A, Shaghaghi Z, Aghahosseini H, Asiabi PA, Joo SW (2016) Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of sterically congested 2-(dibenzylamino)-2-aryl acetamide derivatives from by phthaldehyde isomers, isocyanides and dibenzylamine. Bull Chem Soc Ethiop 30:413–420. https://doi.org/10.4314/bcse.v30i3.9

    Article  CAS  Google Scholar 

  20. Shah LA, Farooqi ZH, Naeem H, Shah SM, Siddiq M (2013) Synthesis and characterization of poly(N-isopropylacrylamide) hybrid microgels with different cross-linker contents. J Chem Soc Pak 35:1522–1529

    Google Scholar 

  21. Lü J, Yang Y, Gao J, Duan H, Lü C (2018) Thermoresponsive amphiphilic block copolymer-stablilized gold nanoparticles: synthesis and high catalytic properties. Langmuir 34:8205–8214. https://doi.org/10.1021/acs.langmuir.8b00414

    Article  CAS  PubMed  Google Scholar 

  22. Khan SB, Ali F, Kamal T, Anwar Y, Asiri AM, Seo J (2016) CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int J Biol Macromol 88:113–119. https://doi.org/10.1016/j.ijbiomac.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  23. Khan FU, Asimullah SB, Khan T, Kamal AM, Asiri IU, Khan K (2017) Akhtar, Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol 102:868–877. https://doi.org/10.1016/j.ijbiomac.2017.04.062

    Article  CAS  PubMed  Google Scholar 

  24. Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM (2017) Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere 188:588–598. https://doi.org/10.1016/j.chemosphere.2017.08.118

    Article  CAS  PubMed  Google Scholar 

  25. Khan SB, Khan SA, Marwani HM, Bakhsh EM, Anwar Y, Kamal T, Asiri AM, Akhtar K (2016) Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol. Rsc Adv 6:110077–110090. https://doi.org/10.1039/c6ra21626a

    Article  CAS  Google Scholar 

  26. Bordbar M, Mortazavimanesh N (2017) Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Environ Sci Pollut Res 24:4093–4104. https://doi.org/10.1007/s11356-016-8183-y

    Article  CAS  Google Scholar 

  27. Song X, Shi X (2017) Bioreductive deposition of highly dispersed Ag nanoparticles on carbon nanotubes with enhanced catalytic degradation for 4-nitrophenol assisted by Shewanella oneidensis MR-1. Environ Sci Pollut Res 24:3038–3044. https://doi.org/10.1007/s11356-016-8076-0

    Article  CAS  Google Scholar 

  28. Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R (2017) Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ Sci Pollut Res 24:5249–5258. https://doi.org/10.1007/s11356-016-8276-7

    Article  CAS  Google Scholar 

  29. Yang M, Shi X (2019) Biosynthesis of Ag2S/TiO2 nanotubes nanocomposites by Shewanella oneidensis MR-1 for the catalytic degradation of 4-nitrophenol. Environ Sci Pollut Res 26:12237–12246. https://doi.org/10.1007/s11356-019-04462-1

    Article  CAS  Google Scholar 

  30. Kamal T, Ahmad I, Khan SB, Asiri AM (2019) Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int J Biol Macromol 135:1162–1170. https://doi.org/10.1016/j.ijbiomac.2019.05.057

    Article  CAS  PubMed  Google Scholar 

  31. Khan MSJ, Khan SB, Kamal T, Asiri AM (2019) Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polym Test 78:105983. https://doi.org/10.1016/j.polymertesting.2019.105983

    Article  CAS  Google Scholar 

  32. Kamal T (2019) Aminophenols formation from nitrophenols using agar biopolymer hydrogel supported CuO nanoparticles catalyst. Polym Test 77:105896. https://doi.org/10.1016/j.polymertesting.2019.105896

    Article  CAS  Google Scholar 

  33. Ali N, Awais T, Kamal M, Ul-Islam A, Khan SJ, Shah A (2018) Zada, Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int J Biol Macromol 111:832–838. https://doi.org/10.1016/j.ijbiomac.2018.01.092

    Article  CAS  PubMed  Google Scholar 

  34. Kamal T, Ahmad I, Khan SB, Asiri AM (2018) Agar hydrogel supported metal nanoparticles catalyst for pollutants degradation in water. Desalin Water Treat 136:190–298. https://doi.org/10.5004/dwt.2018.23230

    Article  CAS  Google Scholar 

  35. Shah LA, Ambreen J, Bibi I, Sayed M, Siddiq M (2016) Silver nanoparticles fabricated hybrid microgels for optical and catalytic study. J Chem Soc Pak 38:850–858

    CAS  Google Scholar 

  36. Ajmal M, Demirci S, Siddiq M, Aktas N, Sahiner N (2016) Simultaneous catalytic degradation/reduction of multiple organic compounds by modifiable p(methacrylic acid-co-acrylonitrile)-M (M: Cu, Co) microgel catalyst composites. New J Chem 40:1485–1496. https://doi.org/10.1039/c5nj02298c

    Article  CAS  Google Scholar 

  37. Silan C, Sagbas S, Sahiner M, Sahiner N (2016) P (Tannic Acid) hydrogel template for in situ metal nanoparticle preparation and use as catalyst for elimination of toxic organic compounds. J Biotechnol 231:S95–S95. https://doi.org/10.1016/j.jbiotec.2016.05.336

    Article  Google Scholar 

  38. Yildiz S, Sahiner M, Sahiner N (2015) Ionic liquid hydrogel templates: bulkgel, cryogel, and microgel to be used for metal nanoparticle preparation and catalysis. Eur Polym J 70:66–78. https://doi.org/10.1016/j.eurpolymj.2015.07.005

    Article  CAS  Google Scholar 

  39. Kamal T, Ali N, Naseem AA, Khan SB, Asiri AM (2016) Polymer nanocomposite membranes for antifouling nanofiltration. Recent Pat Nanotechnol 10:189–201. https://doi.org/10.2174/1872210510666160429145704

    Article  CAS  PubMed  Google Scholar 

  40. Khan SA, Khan SB, Kamal T, Asiri AM, Akhtar K (2016) Recent development of chitosan nanocomposites for environmental applications. Recent Pat Nanotechnol 10:181–188. https://doi.org/10.2174/1872210510666160429145339

    Article  CAS  PubMed  Google Scholar 

  41. Ul-Islam M, Ullah MW, Khan S, Kamal T, Ul-Islam S, Shah N, Park JK (2016) Recent advancement in cellulose based nanocomposite for addressing environmental challenges. Recent Pat Nanotechnol 10:169–180. https://doi.org/10.2174/1872210510666160429144916

    Article  CAS  PubMed  Google Scholar 

  42. Bouten PJM, Zonjee M, Bender J, Yauw STK, van Goor H, van Hest JCM, Hoogenboom R (2014) The chemistry of tissue adhesive materials. Prog Polym Sci 39:1375–1405. https://doi.org/10.1016/j.progpolymsci.2014.02.001

    Article  CAS  Google Scholar 

  43. Rocha-García D, Betancourt-Mendiola ML, Wong-Arce A, Rosales-Mendoza S, Reyes-Hernández J, González-Ortega O, Palestino G (2018) Gelatin-based porous silicon hydrogel composites for the controlled release of tramadol. Eur Polym J 108:485–497. https://doi.org/10.1016/j.eurpolymj.2018.09.033

    Article  CAS  Google Scholar 

  44. Ahmad I, Kamal T, Khan SB, Asiri AM (2016) An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper. Cellulose 23:3577–3588. https://doi.org/10.1007/s10570-016-1053-4

    Article  CAS  Google Scholar 

  45. Kamal T, Khan SB, Asiri AM (2016) Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23:1911–1923. https://doi.org/10.1007/s10570-016-0919-9

    Article  CAS  Google Scholar 

  46. Gong R, Ye J, Dai W, Yan X, Hu J, Hu X, Li S, Huang H (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res 52:14297–14303. https://doi.org/10.1021/ie402138w

    Article  CAS  Google Scholar 

  47. Azami M, Bahram M, Nouri S, Naseri A (2012) Central composite design for the optimization of removal of the azo dye, methyl orange, from waste water using fenton reaction. J Serbian Chem Soc 77:235–246

    Article  CAS  Google Scholar 

  48. Markarian SA, Shahinyan GA (2015) The effect of dimethylsulfoxide on absorption and fluorescence spectra of aqueous solutions of acridine orange base. Spectrochim Acta 151:662–666. https://doi.org/10.1016/j.saa.2015.06.126

    Article  CAS  Google Scholar 

  49. Khan MSJ, Kamal T, Ali F, Asiri AM, Khan SB (2019) Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 132:772–783. https://doi.org/10.1016/j.ijbiomac.2019.03.205

    Article  CAS  PubMed  Google Scholar 

  50. Kamal T, Khan SB, Asiri AM (2016) Nickel nanoparticles-chitosan composite coated cellulose filter paper: an efficient and easily recoverable dip-catalyst for pollutants degradation. Environ Pollut 218:625–633. https://doi.org/10.1016/j.envpol.2016.07.046

    Article  CAS  PubMed  Google Scholar 

  51. Shil AK, Sharma D, Guha NR, Das P (2012) Solid supported Pd(0): an efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Tetrahedron Lett 53:4858–4861. https://doi.org/10.1016/j.tetlet.2012.06.132

    Article  CAS  Google Scholar 

  52. Liu X, Liang M, Liu M, Su R, Wang M, Qi W, He Z (2016) Highly efficient catalysis of azo dyes using recyclable silver nanoparticles immobilized on tannic acid-grafted eggshell membrane. Nanoscale Res Lett 11:440. https://doi.org/10.1186/s11671-016-1647-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalbasi RJ, Nourbakhsh AA, Babaknezhad F (2011) Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds. Catal Commun 12:955–960. https://doi.org/10.1016/j.catcom.2011.02.019

    Article  CAS  Google Scholar 

  54. Naghdi S, Sajjadi M, Nasrollahzadeh M, Rhee KY, Sajadi SM, Jaleh B (2018) Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J Taiwan Inst Chem Eng 86:158–173. https://doi.org/10.1016/j.jtice.2017.12.017

    Article  CAS  Google Scholar 

  55. Xie M, Zhang F, Long Y, Ma J (2013) Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv 3:10329–10334. https://doi.org/10.1039/C3RA41161C

    Article  CAS  Google Scholar 

  56. Khan MM, Lee J, Cho MH (2014) Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20:1584–1590. https://doi.org/10.1016/j.jiec.2013.08.002

    Article  CAS  Google Scholar 

  57. Choi Y, Bae HS, Seo E, Jang S, Park KH, Kim B-S (2011) Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J Mater Chem 21:15431–15436. https://doi.org/10.1039/C1JM12477C

    Article  CAS  Google Scholar 

  58. Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM, Sobahi TRA (2017) Chitosan coated cotton cloth supported zero-valent nanoparticles: simple but economically viable, efficient and easily retrievable catalysts. Sci Rep 7:16957. https://doi.org/10.1038/s41598-017-16815-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang H, Li S, Zhang X, Wang X, Ma J (2014) Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J Mater Chem A 2:12060–12067. https://doi.org/10.1039/C4TA01513D

    Article  CAS  Google Scholar 

  60. Ali F, Khan SB, Kamal T, Alamry KA, Bakhsh EM, Asiri AM, Sobahi TRA (2018) Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym 192:217–230. https://doi.org/10.1016/j.carbpol.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  61. Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM (2017) Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr Polym 173:676–689. https://doi.org/10.1016/j.carbpol.2017.05.074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (DF-100-130-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahseen Kamal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, T., Khan, M.S.J., Khan, S.B. et al. Silver Nanoparticles Embedded in Gelatin Biopolymer Hydrogel as Catalyst for Reductive Degradation of Pollutants. J Polym Environ 28, 399–410 (2020). https://doi.org/10.1007/s10924-019-01615-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01615-8

Keywords

Navigation