Skip to main content

Advertisement

Log in

A Review on Material and Antimicrobial Properties of Soy Protein Isolate Film

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In twenty first century, there is an increasing demand for packed food which requires packaging films. At present, these packaging films are processed from synthetic polymers such as polyethylene, polypropylene and many other synthetic polymers. But we need to start using soy protein as sustainable antimicrobial film that can be used for packaging purposes. There is abundance and high availability of soy protein isolate (SPI) as by-product from industries, such as food processing or biodiesel production. Soy based films from renewable resources can offer a more suitable alternative to films fabricated from synthetic materials. Soy based films in presence of additives such as acidic compounds, nanoparticles and natural compounds have good mechanical properties and are transparent in nature. In addition, soy based film in presence of 2,2-diphenyl-2-hydroxyethanoic acid and copper phosphate can give lotus-like structure as evidenced from morphological studies. Also the manufacturing process (solution casting and compression molding) of SPI film in the presence or absence of additives is very easy and commercially feasible. It is worth noting that SPI films can be produced at laboratory scale by both casting and compression molding methods. In this review paper, we have focused on the material properties as well as antimicrobial properties of SPI based films in the presence of natural and synthetic additives as reported in the last 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Reproduced with permission from American Chemical Society (Ref. [7]; Copyright 2019)]

Fig. 2

[Reproduced with permission from Elsevier (Ref. [69]; Copyright 2019)]

Fig. 3

[Reproduced with permission from American Chemical Society (Ref. [97]; Copyright 2019)]

Fig. 4

[Reproduced with permission from Tech Science Press (Ref. [100]; Copyright 2019)]

Fig. 5

[Reproduced with permission from American Chemical Society (Ref. [101]; Copyright 2019)]

Fig. 6

[Reproduced with permission from John Wiley and Sons (Ref. [107]; Copyright 2019)]

Fig. 7

[Reproduced with permission from American Chemical Society (Ref. [97]; Copyright 2019)]

Fig. 8

[Reproduced with permission from American Chemical Society (Ref. [89]; Copyright 2019)]

Fig. 9

[Reproduced with permission from Elsevier (Ref. [35]; Copyright 2019)]

Fig. 10

[Reproduced with permission from American Chemical Society (Ref. [7]; Copyright 2019)]

Fig. 11

[Reproduced with permission from American Chemical Society (Ref. [97]; Copyright 2019)]

Fig. 12

[Reproduced with permission from American Chemical Society (Ref. [89]; Copyright 2019)]

Fig. 13

Similar content being viewed by others

References

  1. Song F, Dang TL, Wang XL, Wang YZ (2011) Biomacromol 12:3369–3380

    Article  CAS  Google Scholar 

  2. Eswaranandam S, Hettiarachchy NS, Johnson MG (2004) J Food Sci 69:79–84

    Google Scholar 

  3. Friesen K, Chang C, Nickerson M (2015) Food Chem 172:18–23

    Article  CAS  PubMed  Google Scholar 

  4. Kumar R, Anandjiwala RD, Kumar A (2016) J Therm Anal Calorim 123:1273–1279

    Article  CAS  Google Scholar 

  5. Ou S, Kwok KC (2004) J Sci Food Agric 84:1261–1269

    Article  CAS  Google Scholar 

  6. Briggs DR, Wolf WJ (1957) Arch Biochem Biophys 72:127–144

    Article  CAS  PubMed  Google Scholar 

  7. Kumar R, Zhang L (2008) Biomacromol 9:2430–2437

    Article  CAS  Google Scholar 

  8. Sun XS, Kim HR, Mo X (1999) J Am Oil Chem Soc 76:117–123

    Article  CAS  Google Scholar 

  9. Kumar R, Wang L, Zhang L (2009) J Appl Polym Sci 111:970–977

    Article  CAS  Google Scholar 

  10. Wang S, Zhang S, Jane JL, Sue H (1995) J Polym Mater Sci Eng 72:88–89

    CAS  Google Scholar 

  11. Wang S, Sue HJ, Jane JL (1996) J Macromol Sci Pure Appl Chem 33:557–569

    Article  Google Scholar 

  12. Mo X, Sun X (2001) J Am Oil Chem Soc 78:867–872

    Article  CAS  Google Scholar 

  13. Liu D, Zhang L (2006) Macromol Mater Eng 291:820–828

    Article  CAS  Google Scholar 

  14. Chen P, Zhang L (2005) Macromol Biosci 5:237–245

    Article  CAS  PubMed  Google Scholar 

  15. Chen P, Zhang L, Cao F (2005) Macromol Biosci 5:872–880

    Article  CAS  PubMed  Google Scholar 

  16. Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93:2590–2596

    Article  CAS  Google Scholar 

  17. Swain SN, Rao KK, Nayak PL (2005) Polym Int 54:739–743

    Article  CAS  Google Scholar 

  18. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA (1998) Ind Crop Prod 8:195–203

    Article  CAS  Google Scholar 

  19. Dawson PL, Hirt DE, Rieck JR, Acton JC, Sotthibandhu A (2003) Food Res Int 36:959–968

    Article  CAS  Google Scholar 

  20. Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA (2000) J Agric Food Chem 48:4937–4941

    Article  CAS  PubMed  Google Scholar 

  21. Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika PR, Martín-Belloso O, McHugh TH (2007) J Food Eng 81:634–641

    Article  CAS  Google Scholar 

  22. Cagri A, Ustunol Z, Ryser ET (2004) J Food Prot 67:833–848

    Article  CAS  PubMed  Google Scholar 

  23. Kroll J, Rawel HM (2001) J Food Sci 66:48–58

    Article  CAS  Google Scholar 

  24. Nice DJ, Robinson DS, Holden MA (1995) Food Chem 52:393–397

    Article  CAS  Google Scholar 

  25. Sastry MS, Rao MN (1990) J Agric Food Chem 38:2103–2110

    Article  CAS  Google Scholar 

  26. Lin YT, Labbe RG, Shetty K (2004) Appl Environ Microbiol 70:5672–5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davidson PM (2001) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, 2nd edn. ASM Press, Washington, DC, pp 611–616

    Google Scholar 

  28. Xia C, Wang L, Dong Y, Zhang S, Shi SQ, Cai L, Li J (2015) RSC Adv 5:82765–82771

    Article  CAS  Google Scholar 

  29. Kumar R (2012) J Therm Anal Calorim 107:1287–1292

    Article  CAS  Google Scholar 

  30. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  31. Garrido T, Leceta I, Cabezudo S, Guerrero P, de la Koro C (2016) Eur Polym J 85:499–507

    Article  CAS  Google Scholar 

  32. Beuchat LR (1998) Surface decontamination of fruits and vegetables eaten raw: a review. Food safety issues. Food Safety Unit/World Health Organization, Geneva, p 42

    Google Scholar 

  33. Jay JM (2000) Modern food microbiology, 6th edn. Chapman and Hall, New York, p 257

    Book  Google Scholar 

  34. Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) J Appl Microbiol 94:240–247

    Article  CAS  PubMed  Google Scholar 

  35. Kumar R, Zhang L (2009) Ind Crops Prod 29:485–494

    Article  CAS  Google Scholar 

  36. Guo Z, Liu W (2007) Plant Sci 172:1103–1112

    Article  CAS  Google Scholar 

  37. Bai H, Kumar R, Yang C, Liu X, Zhang L (2010) Polym Compos 18:197–203

    Article  CAS  Google Scholar 

  38. Azeredo HM, Waldron KW (2016) Trends Food Sci Technol 52:109–122

    Article  CAS  Google Scholar 

  39. Wihodo M, Moraru CI (2013) J Food Eng 114:292–302

    Article  CAS  Google Scholar 

  40. Liyama K, Lam TB, Stone B (1984) Plant Physiol 104:315–320

    Google Scholar 

  41. Cao N, Fu Y, He J (2007) Food Hydrocoll 21:575–584

    Article  CAS  Google Scholar 

  42. Fabra MJ, Hambleton A, Talens P, Debeaufort F, Chiralt A (2011) Food Hydrocoll 25:1441–1447

    Article  CAS  Google Scholar 

  43. Mathew S, Abraham TE (2008) Food Hydrocoll 22:826–835

    Article  CAS  Google Scholar 

  44. Ou S, Wang Y, Tang S, Huang C, Jackson MG (2005) J Food Eng 70:205–210

    Article  Google Scholar 

  45. Alves MM, Gonçalves MP, Rocha CM (2017) LWT-Food Sci Technol 80:409–415

    Article  CAS  Google Scholar 

  46. Luo J, Lai J, Zhang N, Liu Y, Liu R, Liu X (2016) ACS Sustain Chem Eng 4:1404–1413

    Article  CAS  Google Scholar 

  47. Peng L, Guo R, Lan J, Jiang S, Lin S (2016) Appl Surf Sci 386:151–159

    Article  CAS  Google Scholar 

  48. Barrett DG, Sileika TS, Messersmith PB (2014) Chem Commun 50:7265–7268

    Article  CAS  Google Scholar 

  49. Guo J, Ping Y, Ejima H, Alt K, Meissner M, Richardson JJ, Caruso F (2014) Angew Chemi Int Ed 53:5546–5551

    Article  CAS  Google Scholar 

  50. Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Caruso F (2013) Science 341:154–157

    Article  CAS  PubMed  Google Scholar 

  51. Hou C, Wang Y, Zhu H, Wei H (2016) Chem Eng J 283:397–403

    Article  CAS  Google Scholar 

  52. Rahim MA, Ejima H, Cho KL, Kempe K, Müllner M, Best JP, Caruso F (2014) Chem Mater 26:1645–1653

    Article  CAS  Google Scholar 

  53. Zhao J, Pan F, Li P, Zhao C, Jiang Z, Zhang P, Cao X (2013) ACS Appl Mater Interfaces 5:13275–13283

    Article  CAS  PubMed  Google Scholar 

  54. Ahn J, Grun IU, Mustapha A (2004) J Food Prot 67:148–155

    Article  CAS  PubMed  Google Scholar 

  55. Sivarooban T, Hettiarachchy NS, Johnson MG (2008) Food Res Int 41:781–785

    Article  CAS  Google Scholar 

  56. Ultee A, Bennik MHJ, Moezelaar R (2002) Appl Environ Microbiol 68:1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim S, Ruengwilysup C, Fung DYC (2004) J Food Prot 67:2608–2612

    Article  CAS  PubMed  Google Scholar 

  58. Rababah TM, Hettiarachchy NS, Horax R (2004) J Agric Food Chem 52:5183–5186

    Article  CAS  PubMed  Google Scholar 

  59. Sivarooban T, Hettiarachchy NS, Johnson MG (2006) J Food Sci 71:39–44

    Google Scholar 

  60. Emiroğlu ZK, Yemiş GP, Coşkun BK, Candoğan K (2010) Meat Sci 86:283–288

    Article  CAS  PubMed  Google Scholar 

  61. Burt S (2004) Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  62. Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2004) J Agric Food Chem 52:5598–5605

    Article  CAS  PubMed  Google Scholar 

  63. López P, Sánchez C, Batlle R, Nerín C (2005) J Agric Food Chem 53:6939–6946

    Article  CAS  PubMed  Google Scholar 

  64. Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006) J Food Prot 69:2364–2369

    Article  CAS  PubMed  Google Scholar 

  65. López P, Sánchez C, Batlle R, Nerín C (2007) J Agric Food Chem 55:4348–4356

    Article  CAS  PubMed  Google Scholar 

  66. Solomakos N, Govaris A, Koidis P, Botsoglou N (2008) Meat Sci 80:159–166

    Article  CAS  PubMed  Google Scholar 

  67. Brito-Oliveira TC, Bispo M, Moraes ICF, Campanella OH, Pinho SC (2017) Food Res Int 102:759–767

    Article  CAS  PubMed  Google Scholar 

  68. Chen S, Zhang N, Tang CH (2016) Food Hydrocoll 61:102–112

    Article  CAS  Google Scholar 

  69. Chen FP, Li BS, Tang CH (2015) Food Res Int 75:157–165

    Article  CAS  PubMed  Google Scholar 

  70. Brigger I, Dubernet C, Couvreur P (2002) Adv Drug Deliv Rev 54:631–651

    Article  CAS  PubMed  Google Scholar 

  71. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  72. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  73. Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Tech 5:1447–1464

    Article  CAS  Google Scholar 

  74. Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9:035004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  76. Varghese S, Kuriakose S, Jose S (2013) J Nanosci. https://doi.org/10.1155/2013/457865

    Article  Google Scholar 

  77. Kempiński W, Łoś S, Kempiński M, Markowski D (2014) Beilstein J Nanotechnol 5:1760–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klasen HJ (2000) Burns 26:117–130

    Article  CAS  PubMed  Google Scholar 

  79. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  80. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim YK (2007) Nanomedicine NBM 3:95–101

    Article  CAS  Google Scholar 

  81. Sondi I, Goia DV, Matijević E (2003) J Colloid Interface Sci 260:75–81

    Article  CAS  PubMed  Google Scholar 

  82. Ramesh GV, Porel S, Radhakrishnan TP (2009) Chem Soc Rev 38:2646–2656

    Article  CAS  PubMed  Google Scholar 

  83. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnology 18:225103

    Article  CAS  Google Scholar 

  84. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamanaka M, Hara K, Kudo J (2005) Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  87. Zheng H, Tan Z, Zhan Y, Huang J (2003) J Appl Polym Sci 90:3676–3682

    Article  CAS  Google Scholar 

  88. Huang J, Zhang L, Chen P (2003) J Appl Polym Sci 88:3291–3297

    Article  CAS  Google Scholar 

  89. Chen P, Zhang L (2006) Biomacromol 7:1700–1706

    Article  CAS  Google Scholar 

  90. Tian H (2012) J Compos Mater 46:427–435

    Article  CAS  Google Scholar 

  91. Li Y, Chen H, Dong Y, Li K, Li L, Li J (2016) Ind Crops Prod 82:133–140

    Article  CAS  Google Scholar 

  92. Zhang J, Jiang L, Zhu L, Jane J, Mungara P (2006) Biomacromol 7:1551–1561

    Article  CAS  Google Scholar 

  93. Plummer CJG, Garamszegi L, Leterrier Y, Rodlert M, Månson JE (2002) Chem Mater 14:486–488

    Article  CAS  Google Scholar 

  94. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  95. Chen X, Kong L, Dong D, Yang G, Yu L, Chen J, Zhang P (2009) J Phys Chem C 113:5396–5401

    Article  CAS  Google Scholar 

  96. Li H, Yu S, Han X (2016) Chem Eng J 83:1443–1454

    Article  CAS  Google Scholar 

  97. Xie WY, Song F, Wang XL, Wang YZ (2017) ACS Sustain Chem Eng 5:869–875

    Article  CAS  Google Scholar 

  98. Tian H, Xu G (2011) J Polym Environ 19:582–588

    Article  CAS  Google Scholar 

  99. Kim HW, Kim KM, Ko EJ, Lee SK, Ha SD, Song KB, Park SK, Kwon KS, Bae DH (2004) J Microbiol Biotechnol 14:1303–1309

    CAS  Google Scholar 

  100. Kumar R, Rani P, Kumar KD (2019) J Renew Mater 7:103–115

    Article  Google Scholar 

  101. Insaward A, Duangmal K, Mahawanich T (2015) J Agric Food Chem 63:9421–9426

    Article  CAS  PubMed  Google Scholar 

  102. Xu F, Dong Y, Zhang W, Zhang S, Li L, Li J (2015) Ind Crops Prod 67:373–380

    Article  CAS  Google Scholar 

  103. Wang Z, Kang H, Zhang W, Zhang S, Li J (2017) Appl Surf Sci 401:271–282

    Article  CAS  Google Scholar 

  104. Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016) ACS Sustain Chem Eng 4:1985–1993

    Article  CAS  Google Scholar 

  105. Rubentheren V, Ward TA, Chee CY, Nair P (2015) Cellulose 22:2529–2541

    Article  CAS  Google Scholar 

  106. Ko S, Janes ME, Hettiarachchy NS, Johnson MG (2001) J Food Sci 66:1006–1111

    Article  CAS  Google Scholar 

  107. Zheng H, Ai F, Wei M, Huang J, Chang PR (2007) Macromol Mater Eng 292:780–788

    Article  CAS  Google Scholar 

  108. Ai F, Zheng H, Wei M, Huang J, Chang PR (2007) J Appl Polym Sci 105:1597–1604

    Article  CAS  Google Scholar 

  109. Sağdıç O (2003) LWT—Food Sci Tech 36:467–473

    Article  CAS  Google Scholar 

  110. Dadalioglu I, Evrendilek G (2004) J Agri Food Chem 52:8255–8260

    Article  CAS  Google Scholar 

  111. Donaldson JR, Warner SL, Cates RG, Young DG (2005) Pharm Biol 43:687–695

    Article  CAS  Google Scholar 

  112. Nedorostova L, Kloucek P, Kokoska L, Stolcova M, Pulkrabek J (2009) Food Control 20:157–160

    Article  CAS  Google Scholar 

  113. Seydim AC, Sarikus G (2006) Food Res Int 39:639–644

    Article  CAS  Google Scholar 

  114. Sun Q, Li X, Wang P, Du Y, Han D, Wang F, Liu X, Li P, Fu H (2011) J Food Sci 76:E438–E443

    Article  CAS  PubMed  Google Scholar 

  115. Zhao S, Yao J, Fei X, Shao Z, Chen X (2013) Mater Lett 95:142–144

    Article  CAS  Google Scholar 

  116. Zhang Y, Lee MW, An S, Ray SS, Khansari S, Joshi B, Hong S, Hong JH, Kim JJ, Pourdeyhim B, Yoon SS, Yarin AL (2013) Catal Commun 34:35–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Kumar, R. A Review on Material and Antimicrobial Properties of Soy Protein Isolate Film. J Polym Environ 27, 1613–1628 (2019). https://doi.org/10.1007/s10924-019-01456-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01456-5

Keywords

Navigation