Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 8, pp 1613–1628 | Cite as

A Review on Material and Antimicrobial Properties of Soy Protein Isolate Film

  • Shikha Rani
  • Rakesh KumarEmail author
Review
  • 130 Downloads

Abstract

In twenty first century, there is an increasing demand for packed food which requires packaging films. At present, these packaging films are processed from synthetic polymers such as polyethylene, polypropylene and many other synthetic polymers. But we need to start using soy protein as sustainable antimicrobial film that can be used for packaging purposes. There is abundance and high availability of soy protein isolate (SPI) as by-product from industries, such as food processing or biodiesel production. Soy based films from renewable resources can offer a more suitable alternative to films fabricated from synthetic materials. Soy based films in presence of additives such as acidic compounds, nanoparticles and natural compounds have good mechanical properties and are transparent in nature. In addition, soy based film in presence of 2,2-diphenyl-2-hydroxyethanoic acid and copper phosphate can give lotus-like structure as evidenced from morphological studies. Also the manufacturing process (solution casting and compression molding) of SPI film in the presence or absence of additives is very easy and commercially feasible. It is worth noting that SPI films can be produced at laboratory scale by both casting and compression molding methods. In this review paper, we have focused on the material properties as well as antimicrobial properties of SPI based films in the presence of natural and synthetic additives as reported in the last 20 years.

Keywords

Soy protein isolate Acid additives Natural compounds Nanoparticles Mechanical properties Hydrophobicity Antimicrobial properties 

Notes

References

  1. 1.
    Song F, Dang TL, Wang XL, Wang YZ (2011) Biomacromol 12:3369–3380Google Scholar
  2. 2.
    Eswaranandam S, Hettiarachchy NS, Johnson MG (2004) J Food Sci 69:79–84Google Scholar
  3. 3.
    Friesen K, Chang C, Nickerson M (2015) Food Chem 172:18–23Google Scholar
  4. 4.
    Kumar R, Anandjiwala RD, Kumar A (2016) J Therm Anal Calorim 123:1273–1279Google Scholar
  5. 5.
    Ou S, Kwok KC (2004) J Sci Food Agric 84:1261–1269Google Scholar
  6. 6.
    Briggs DR, Wolf WJ (1957) Arch Biochem Biophys 72:127–144Google Scholar
  7. 7.
    Kumar R, Zhang L (2008) Biomacromol 9:2430–2437Google Scholar
  8. 8.
    Sun XS, Kim HR, Mo X (1999) J Am Oil Chem Soc 76:117–123Google Scholar
  9. 9.
    Kumar R, Wang L, Zhang L (2009) J Appl Polym Sci 111:970–977Google Scholar
  10. 10.
    Wang S, Zhang S, Jane JL, Sue H (1995) J Polym Mater Sci Eng 72:88–89Google Scholar
  11. 11.
    Wang S, Sue HJ, Jane JL (1996) J Macromol Sci Pure Appl Chem 33:557–569Google Scholar
  12. 12.
    Mo X, Sun X (2001) J Am Oil Chem Soc 78:867–872Google Scholar
  13. 13.
    Liu D, Zhang L (2006) Macromol Mater Eng 291:820–828Google Scholar
  14. 14.
    Chen P, Zhang L (2005) Macromol Biosci 5:237–245Google Scholar
  15. 15.
    Chen P, Zhang L, Cao F (2005) Macromol Biosci 5:872–880Google Scholar
  16. 16.
    Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93:2590–2596Google Scholar
  17. 17.
    Swain SN, Rao KK, Nayak PL (2005) Polym Int 54:739–743Google Scholar
  18. 18.
    Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA (1998) Ind Crop Prod 8:195–203Google Scholar
  19. 19.
    Dawson PL, Hirt DE, Rieck JR, Acton JC, Sotthibandhu A (2003) Food Res Int 36:959–968Google Scholar
  20. 20.
    Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA (2000) J Agric Food Chem 48:4937–4941Google Scholar
  21. 21.
    Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika PR, Martín-Belloso O, McHugh TH (2007) J Food Eng 81:634–641Google Scholar
  22. 22.
    Cagri A, Ustunol Z, Ryser ET (2004) J Food Prot 67:833–848Google Scholar
  23. 23.
    Kroll J, Rawel HM (2001) J Food Sci 66:48–58Google Scholar
  24. 24.
    Nice DJ, Robinson DS, Holden MA (1995) Food Chem 52:393–397Google Scholar
  25. 25.
    Sastry MS, Rao MN (1990) J Agric Food Chem 38:2103–2110Google Scholar
  26. 26.
    Lin YT, Labbe RG, Shetty K (2004) Appl Environ Microbiol 70:5672–5678Google Scholar
  27. 27.
    Davidson PM (2001) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, 2nd edn. ASM Press, Washington, DC, pp 611–616Google Scholar
  28. 28.
    Xia C, Wang L, Dong Y, Zhang S, Shi SQ, Cai L, Li J (2015) RSC Adv 5:82765–82771Google Scholar
  29. 29.
    Kumar R (2012) J Therm Anal Calorim 107:1287–1292Google Scholar
  30. 30.
    Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) J Food Sci 68:408–420Google Scholar
  31. 31.
    Garrido T, Leceta I, Cabezudo S, Guerrero P, de la Koro C (2016) Eur Polym J 85:499–507Google Scholar
  32. 32.
    Beuchat LR (1998) Surface decontamination of fruits and vegetables eaten raw: a review. Food safety issues. Food Safety Unit/World Health Organization, Geneva, p 42Google Scholar
  33. 33.
    Jay JM (2000) Modern food microbiology, 6th edn. Chapman and Hall, New York, p 257Google Scholar
  34. 34.
    Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) J Appl Microbiol 94:240–247Google Scholar
  35. 35.
    Kumar R, Zhang L (2009) Ind Crops Prod 29:485–494Google Scholar
  36. 36.
    Guo Z, Liu W (2007) Plant Sci 172:1103–1112Google Scholar
  37. 37.
    Bai H, Kumar R, Yang C, Liu X, Zhang L (2010) Polym Compos 18:197–203Google Scholar
  38. 38.
    Azeredo HM, Waldron KW (2016) Trends Food Sci Technol 52:109–122Google Scholar
  39. 39.
    Wihodo M, Moraru CI (2013) J Food Eng 114:292–302Google Scholar
  40. 40.
    Liyama K, Lam TB, Stone B (1984) Plant Physiol 104:315–320Google Scholar
  41. 41.
    Cao N, Fu Y, He J (2007) Food Hydrocoll 21:575–584Google Scholar
  42. 42.
    Fabra MJ, Hambleton A, Talens P, Debeaufort F, Chiralt A (2011) Food Hydrocoll 25:1441–1447Google Scholar
  43. 43.
    Mathew S, Abraham TE (2008) Food Hydrocoll 22:826–835Google Scholar
  44. 44.
    Ou S, Wang Y, Tang S, Huang C, Jackson MG (2005) J Food Eng 70:205–210Google Scholar
  45. 45.
    Alves MM, Gonçalves MP, Rocha CM (2017) LWT-Food Sci Technol 80:409–415Google Scholar
  46. 46.
    Luo J, Lai J, Zhang N, Liu Y, Liu R, Liu X (2016) ACS Sustain Chem Eng 4:1404–1413Google Scholar
  47. 47.
    Peng L, Guo R, Lan J, Jiang S, Lin S (2016) Appl Surf Sci 386:151–159Google Scholar
  48. 48.
    Barrett DG, Sileika TS, Messersmith PB (2014) Chem Commun 50:7265–7268Google Scholar
  49. 49.
    Guo J, Ping Y, Ejima H, Alt K, Meissner M, Richardson JJ, Caruso F (2014) Angew Chemi Int Ed 53:5546–5551Google Scholar
  50. 50.
    Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Caruso F (2013) Science 341:154–157Google Scholar
  51. 51.
    Hou C, Wang Y, Zhu H, Wei H (2016) Chem Eng J 283:397–403Google Scholar
  52. 52.
    Rahim MA, Ejima H, Cho KL, Kempe K, Müllner M, Best JP, Caruso F (2014) Chem Mater 26:1645–1653Google Scholar
  53. 53.
    Zhao J, Pan F, Li P, Zhao C, Jiang Z, Zhang P, Cao X (2013) ACS Appl Mater Interfaces 5:13275–13283Google Scholar
  54. 54.
    Ahn J, Grun IU, Mustapha A (2004) J Food Prot 67:148–155Google Scholar
  55. 55.
    Sivarooban T, Hettiarachchy NS, Johnson MG (2008) Food Res Int 41:781–785Google Scholar
  56. 56.
    Ultee A, Bennik MHJ, Moezelaar R (2002) Appl Environ Microbiol 68:1561–1568Google Scholar
  57. 57.
    Kim S, Ruengwilysup C, Fung DYC (2004) J Food Prot 67:2608–2612Google Scholar
  58. 58.
    Rababah TM, Hettiarachchy NS, Horax R (2004) J Agric Food Chem 52:5183–5186Google Scholar
  59. 59.
    Sivarooban T, Hettiarachchy NS, Johnson MG (2006) J Food Sci 71:39–44Google Scholar
  60. 60.
    Emiroğlu ZK, Yemiş GP, Coşkun BK, Candoğan K (2010) Meat Sci 86:283–288Google Scholar
  61. 61.
    Burt S (2004) Int J Food Microbiol 94:223–253Google Scholar
  62. 62.
    Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2004) J Agric Food Chem 52:5598–5605Google Scholar
  63. 63.
    López P, Sánchez C, Batlle R, Nerín C (2005) J Agric Food Chem 53:6939–6946Google Scholar
  64. 64.
    Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006) J Food Prot 69:2364–2369Google Scholar
  65. 65.
    López P, Sánchez C, Batlle R, Nerín C (2007) J Agric Food Chem 55:4348–4356Google Scholar
  66. 66.
    Solomakos N, Govaris A, Koidis P, Botsoglou N (2008) Meat Sci 80:159–166Google Scholar
  67. 67.
    Brito-Oliveira TC, Bispo M, Moraes ICF, Campanella OH, Pinho SC (2017) Food Res Int 102:759–767Google Scholar
  68. 68.
    Chen S, Zhang N, Tang CH (2016) Food Hydrocoll 61:102–112Google Scholar
  69. 69.
    Chen FP, Li BS, Tang CH (2015) Food Res Int 75:157–165Google Scholar
  70. 70.
    Brigger I, Dubernet C, Couvreur P (2002) Adv Drug Deliv Rev 54:631–651Google Scholar
  71. 71.
    Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182Google Scholar
  72. 72.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Langmuir 18:6679–6686Google Scholar
  73. 73.
    Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Tech 5:1447–1464Google Scholar
  74. 74.
    Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9:035004Google Scholar
  75. 75.
    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Nano-Micro Lett 7:219–242Google Scholar
  76. 76.
    Varghese S, Kuriakose S, Jose S (2013) J Nanosci.  https://doi.org/10.1155/2013/457865 Google Scholar
  77. 77.
    Kempiński W, Łoś S, Kempiński M, Markowski D (2014) Beilstein J Nanotechnol 5:1760–1766Google Scholar
  78. 78.
    Klasen HJ (2000) Burns 26:117–130Google Scholar
  79. 79.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83Google Scholar
  80. 80.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim YK (2007) Nanomedicine NBM 3:95–101Google Scholar
  81. 81.
    Sondi I, Goia DV, Matijević E (2003) J Colloid Interface Sci 260:75–81Google Scholar
  82. 82.
    Ramesh GV, Porel S, Radhakrishnan TP (2009) Chem Soc Rev 38:2646–2656Google Scholar
  83. 83.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnology 18:225103Google Scholar
  84. 84.
    Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Appl Environ Microbiol 74:2171–2178Google Scholar
  85. 85.
    Yamanaka M, Hara K, Kudo J (2005) Appl Environ Microbiol 71:7589–7593Google Scholar
  86. 86.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205Google Scholar
  87. 87.
    Zheng H, Tan Z, Zhan Y, Huang J (2003) J Appl Polym Sci 90:3676–3682Google Scholar
  88. 88.
    Huang J, Zhang L, Chen P (2003) J Appl Polym Sci 88:3291–3297Google Scholar
  89. 89.
    Chen P, Zhang L (2006) Biomacromol 7:1700–1706Google Scholar
  90. 90.
    Tian H (2012) J Compos Mater 46:427–435Google Scholar
  91. 91.
    Li Y, Chen H, Dong Y, Li K, Li L, Li J (2016) Ind Crops Prod 82:133–140Google Scholar
  92. 92.
    Zhang J, Jiang L, Zhu L, Jane J, Mungara P (2006) Biomacromol 7:1551–1561Google Scholar
  93. 93.
    Plummer CJG, Garamszegi L, Leterrier Y, Rodlert M, Månson JE (2002) Chem Mater 14:486–488Google Scholar
  94. 94.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641Google Scholar
  95. 95.
    Chen X, Kong L, Dong D, Yang G, Yu L, Chen J, Zhang P (2009) J Phys Chem C 113:5396–5401Google Scholar
  96. 96.
    Li H, Yu S, Han X (2016) Chem Eng J 83:1443–1454Google Scholar
  97. 97.
    Xie WY, Song F, Wang XL, Wang YZ (2017) ACS Sustain Chem Eng 5:869–875Google Scholar
  98. 98.
    Tian H, Xu G (2011) J Polym Environ 19:582–588Google Scholar
  99. 99.
    Kim HW, Kim KM, Ko EJ, Lee SK, Ha SD, Song KB, Park SK, Kwon KS, Bae DH (2004) J Microbiol Biotechnol 14:1303–1309Google Scholar
  100. 100.
    Kumar R, Rani P, Kumar KD (2019) J Renew Mater 7:103–115Google Scholar
  101. 101.
    Insaward A, Duangmal K, Mahawanich T (2015) J Agric Food Chem 63:9421–9426Google Scholar
  102. 102.
    Xu F, Dong Y, Zhang W, Zhang S, Li L, Li J (2015) Ind Crops Prod 67:373–380Google Scholar
  103. 103.
    Wang Z, Kang H, Zhang W, Zhang S, Li J (2017) Appl Surf Sci 401:271–282Google Scholar
  104. 104.
    Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016) ACS Sustain Chem Eng 4:1985–1993Google Scholar
  105. 105.
    Rubentheren V, Ward TA, Chee CY, Nair P (2015) Cellulose 22:2529–2541Google Scholar
  106. 106.
    Ko S, Janes ME, Hettiarachchy NS, Johnson MG (2001) J Food Sci 66:1006–1111Google Scholar
  107. 107.
    Zheng H, Ai F, Wei M, Huang J, Chang PR (2007) Macromol Mater Eng 292:780–788Google Scholar
  108. 108.
    Ai F, Zheng H, Wei M, Huang J, Chang PR (2007) J Appl Polym Sci 105:1597–1604Google Scholar
  109. 109.
    Sağdıç O (2003) LWT—Food Sci Tech 36:467–473Google Scholar
  110. 110.
    Dadalioglu I, Evrendilek G (2004) J Agri Food Chem 52:8255–8260Google Scholar
  111. 111.
    Donaldson JR, Warner SL, Cates RG, Young DG (2005) Pharm Biol 43:687–695Google Scholar
  112. 112.
    Nedorostova L, Kloucek P, Kokoska L, Stolcova M, Pulkrabek J (2009) Food Control 20:157–160Google Scholar
  113. 113.
    Seydim AC, Sarikus G (2006) Food Res Int 39:639–644Google Scholar
  114. 114.
    Sun Q, Li X, Wang P, Du Y, Han D, Wang F, Liu X, Li P, Fu H (2011) J Food Sci 76:E438–E443Google Scholar
  115. 115.
    Zhao S, Yao J, Fei X, Shao Z, Chen X (2013) Mater Lett 95:142–144Google Scholar
  116. 116.
    Zhang Y, Lee MW, An S, Ray SS, Khansari S, Joshi B, Hong S, Hong JH, Kim JJ, Pourdeyhim B, Yoon SS, Yarin AL (2013) Catal Commun 34:35–40Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyCentral University of South BiharGayaIndia

Personalised recommendations