Skip to main content
Log in

How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Three black biodegradable films based on PBAT-blends (PBAT/PLA, PBAT/PPC and PBAT/Starch) were tested for vine mulching in real field conditions. The impact of field ageing on their morphology, mechanical performance and ultimate biodegradation was investigated on films exposed at the soil surface or buried into the soil in order to assess the respective contribution of the main related ageing factors i.e. UV radiations and microorganisms. The fact that the soil-facing surface of films exhibited holes 18 months after installation suggested that the biodegradation process could occur above-soil even without previous burying step. However, the early loss of integrity of the biodegradable materials was attributed to UV radiations since beyond a certain threshold the photochemical modifications undergone by the material were too high to sustain its integrity. Whatever the material tested the deterioration of mechanical properties was correlated with the crosslinking of polymer chains inducing the formation of a gel fraction. Considering that the major part of the three materials studied is made of PBAT, the nature of the other polymer constituting the blend would not have a significant impact on the ageing mechanism of the material. Biodegradation analyses conducted in compost medium indicated that field ageing had a low impact on the percentages of mineralization whether the materials had been previously aged or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Espi E, Salmeron A, Fontecha A, Garcia Y, Real AI (2006) Plastic films for agricultural applications. J Plast Film Sheeting 22(2):85–102

    Article  CAS  Google Scholar 

  2. Technavio (2015) Agricultural films market in APAC 2015–2019, Technical report

  3. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529

    Article  CAS  Google Scholar 

  4. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil?. Environ Sci Technol 46(12):6453–6454

    Article  CAS  PubMed  Google Scholar 

  5. Kyrikou I, Briassoulis D, Hiskakis M, Babou E (2011) Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polym Degrad Stab 96(12):2237–2252

    Article  CAS  Google Scholar 

  6. Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Degradation in soil behavior of artificially aged polyethylene films with pro-oxidants. J Appl Polym Sci. https://doi.org/10.1002/app.42289

    Article  Google Scholar 

  7. Pablos JL et al (2010) Photodegradation of polyethylenes: comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polym Degrad Stab 95(10):2057–2064

    Article  CAS  Google Scholar 

  8. Scarascia-Mugnozza G, Schettini E, Vox G, Malinconico M, Immirzi B, Pagliara S (2006) Polym Degrad Stab 91(11):2801–2808

    Article  CAS  Google Scholar 

  9. Briassoulis D (2007) Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym Degrad Stab 92(6):1115–1132

    Article  CAS  Google Scholar 

  10. Bilck AP, Grossmann MVE, Yamashita F (2010) Biodegradable mulch films for strawberry production. Polym Test 29(4):471–476

    Article  CAS  Google Scholar 

  11. Touchaleaume F et al (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439

    Article  CAS  PubMed  Google Scholar 

  12. Corrales T, Catalina F, Peinado C, Allen NS, Fontan E (2002) Photooxidative and thermal degradation of polyethylenes: interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data. J Photochem Photobiol A 147 (3):213–224

    Article  CAS  Google Scholar 

  13. Stark NM, Matuana LM (2004) Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym Degrad Stab 86(1):1–9

    Article  CAS  Google Scholar 

  14. Dehbi A, Mourad AHI, Djakhdane K, Hilal-Alnaqbi A (2015) Degradation of thermomechanical performance and lifetime estimation of multilayer greenhouse polyethylene films under simulated climatic conditions. Polym Eng Sci 55(2):287–298

    Article  CAS  Google Scholar 

  15. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers—2. Thermal oxidation of polyethylene. Polym Degrad Stab 76(2):329–340

    Article  CAS  Google Scholar 

  16. Massey S, Adnot A, Rjeb A, Roy D (2007) Action of water in the degradation of low-density polyethylene studied by x-ray photoelectron spectroscopy. Express Polym Lett 1(8):506–511

    Article  CAS  Google Scholar 

  17. Montes JC, Cadoux D, Creus J, Touzain S, Gaudichet-Maurin E, Correc O (2012) Ageing of polyethylene at raised temperature in contact with chlorinated sanitary hot water. Part I—chemical aspects. Polym Degrad Stab 97(2):149–157

    Article  CAS  Google Scholar 

  18. Oceguera-Cervantes A et al (2007) Characterization of the polyurethanolytic activity of two Alicycliphilus sp strains able to degrade polyurethane and N-methylpyrrolidone. Appl Environ Microbiol 73(19):6214–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kessler F et al (2014) Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization. J Photochem Photobiol B 130:57–67

    Article  CAS  PubMed  Google Scholar 

  20. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579

    Article  CAS  Google Scholar 

  21. Saadi Z, Cesar G, Bewa H, Benguigui L (2013) Fungal degradation of poly(butylene adipate-co-terephthalate) in soil and in compost. J Polym Environ 21(4):893–901

    Article  CAS  Google Scholar 

  22. Muthuraj R, Misra M, Mohanty AK (2015) Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci. https://doi.org/10.1002/app.42189

    Article  Google Scholar 

  23. Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91(6):1256–1272

    Article  CAS  Google Scholar 

  24. Coltelli MB, Della Maggiore I, Bertold M, Signori F, Bronco S, Ciardelli F (2008) Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. J Appl Polym Sci 110(2):1250–1262

    Article  CAS  Google Scholar 

  25. Sirisinha K, Somboon W (2012) Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide). J Appl Polym Sci 124(6):4986–4992

    CAS  Google Scholar 

  26. Al-Itry R (2012) PhD thesis, Blends based on poly (lactic acid): structure/ rheology/ processing relationship. PhD, Institut National des Sciences Appliquées de Lyon

  27. Oyama HT, Tanaka Y, Hirai S, Shida S, Kadosaka A (2011) Water-disintegrative and biodegradable blends containing poly(l-lactic acid) and poly(butylene adipate-co-terephthalate). J Polym Sci B 49(5):342–354

    Article  CAS  Google Scholar 

  28. Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26(8):1049–1061

    Article  CAS  Google Scholar 

  29. Tao J et al (2009) Thermal properties and degradability of poly(propylene carbonate)/poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PPC/PHBV) blends. Polym Degrad Stab 94(4):575–583

  30. Luinstra GA, Borchardt E (2012) Material properties of poly(propylene carbonates. In: Rieger B, Kunkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds.) Advances in polymer science synthetic biodegradable polymers, vol 245. Springer, Berlin, pp 29–48

    Chapter  Google Scholar 

  31. Xing CY et al (2013) Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohydr Polym 92(2):1921–1927

    Article  CAS  PubMed  Google Scholar 

  32. Varghese JK, Na SJ, Park JH, Woo D, Yang I, Lee BY (2010) Thermal and weathering degradation of poly(propylene carbonate). Polym Degrad Stab 95(6):1039–1044

    Article  CAS  Google Scholar 

  33. Mani R, Bhattacharya M (2001) Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J 37(3):515–526

    Article  CAS  Google Scholar 

  34. Brandelero RPH, Grossmann MV, Yamashita F (2012) Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydr Polym 90(4):1452–1460

    Article  CAS  PubMed  Google Scholar 

  35. Shirai MA, Olivato JB, Garcia PS, Muller CMO, Grossmann MVE, Yamashita F (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition. Mater Sci Eng C 33(7):4112–4117

    Article  CAS  Google Scholar 

  36. ASTM D2765 – 11 (2011) Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics

  37. ASTM D5988 - 12 (2012) Standard test method for determining aerobic biodegradation of plastic materials in soil

  38. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73(4):429–442

    Article  CAS  PubMed  Google Scholar 

  39. Malinconico M, Immirzi B, Santagata G, Schettini E, Vox G, Scarascia Mugnozza G (2008) An overview on innovative biodegradable materials for agricultural applications. In: Moeller HW (ed) Progress in polymer degradation and stability research. Nova Science Publisher, New York, pp 69–114

    Google Scholar 

  40. Muller RJ (2005) Biodegradability of polymers: regulations and methods for testing. In: Biopolymers online. pp 365–388

  41. Degli Innocenti F (2005) Biodegradation behaviour of polymers in soil. In: Bastoli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Shawbury

    Google Scholar 

  42. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2011) Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation. Polym Degrad Stab 96(10):1919–1926

    Article  CAS  Google Scholar 

  43. Kijchavengkul T, Auras R, Rubino M, Alvarado E, Camacho JR, Montero, Rosales JM (2010) Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polym Degrad Stab 95(2):99–107

    Article  CAS  Google Scholar 

  44. Albertsson A (1992) Biodegradation of polymers. In: Handbook of polymer degradation. Marcel Dekker, New York, pp 345–363

    Google Scholar 

  45. Han CY, Bian JJ, Liu H, Dong LS (2009) Effect of gamma-radiation on the thermal and mechanical properties of a commercial poly(butylene adipate-co-terephthalate). Polym Int 58(6):691–696

    Article  CAS  Google Scholar 

  46. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: field study. Chemosphere 71(5):942–953

    Article  CAS  PubMed  Google Scholar 

  47. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions. Chemosphere 71(9):1607–1616

    Article  CAS  PubMed  Google Scholar 

  48. Stloukal P et al (2012) Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 88(10):1214–1219

    Article  CAS  PubMed  Google Scholar 

  49. Koo GH, Jang J (2013) Preparation of melting-free poly(lactic acid) by amorphous and crystal crosslinking under UV irradiation. J Appl Polym Sci 127(6):4515–4523

    Article  CAS  Google Scholar 

  50. Nagasawa N, Kasai N, Yagi T, Yoshii F, Tamada M (2011) Radiation-induced crosslinking and post-processing of poly(l-lactic acid) composite. Radiat Phys Chem 80(2):145–148

    Article  CAS  Google Scholar 

  51. Kumara PHS, Nagasawa N, Yagi T, Tamada M (2008) Radiation-induced crosslinking and mechanical properties of blends of poly(lactic acid) and poly(butylene terephthalate-co-adipate). J Appl Polym Sci 109, 5:3321–3328

    Article  CAS  Google Scholar 

  52. An J, Ke Y, Cao X, Ma Y, Wang F (2014) A novel method to improve the thermal stability of poly(propylene carbonate). Polym Chem 5(14):4245–4250

    Article  CAS  Google Scholar 

  53. Tao YH, Wang XH, Zhao XJ, Li J, Wang FS (2006) Crosslinkable poly(propylene carbonate): high-yield synthesis and performance improvement. J Polym Sci Part A 44(18):5329–5336

    Article  CAS  Google Scholar 

  54. Qin YS, Ma QW, Wang XH, Sun JZ, Zhao XJ, Wang FS (2007) Electron-beam irradiation on poly(propylene carbonate) in the presence of polyfunctional monomers. Polym Degrad Stab 92(10):1942–1947

    Article  CAS  Google Scholar 

  55. Niazi MBK, Broekhuis AA (2015) Surface photo-crosslinking of plasticized thermoplastic starch films. Eur Polym J 64:229–243

    Article  CAS  Google Scholar 

  56. Zhou J, Zhang J, Ma Y, Tong J (2008) Surface photo-crosslinking of corn starch sheets. Carbohydr Polym 74(3):405–410

    Article  CAS  Google Scholar 

  57. Delville J, Joly C, Dole P, Bliard C (2002) Solid state photocrosslinked starch based films: a new family of homogeneous modified starches. Carbohydr Polym 49(1):71–81

    Article  CAS  Google Scholar 

  58. Commereuc S, Askanian H, Verney V, Celli A, Marchese P (2010) About durability of biodegradable polymers: structure/degradability relationships. Mod Trends Polym Sci-Epf 09 296:378–387

    CAS  Google Scholar 

  59. Commereuc S, Askanian H, Verney V, Celli A, Marchese P, Berti C (2013) About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: structure/degradability relationships. Polym Degrad Stab 98(7):1321–1328

    Article  CAS  Google Scholar 

  60. Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat JL (2015) Plastic deformation mechanisms of semicrystalline and amorphous polymers. Acs Macro Lett 4(2):147–150

    Article  CAS  Google Scholar 

  61. Hablot E, Dharmalingam S, Hayes DG, Wadsworth LC, Blazy C, Narayan R (2014) Effect of simulated weathering on physicochemical properties and inherent biodegradation of PLA/PHA nonwoven mulches. J Polym Environ 22(4):417–429

    Article  CAS  Google Scholar 

  62. Mueller RJ (2006) Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochem 41(10):2124–2128

    Article  CAS  Google Scholar 

  63. Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2000) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. J Polym Environ 8(4):183–195

Download references

Acknowledgements

This study has been carried out in the frame of the AGROBIOFILM project with financial support from the European Union 7th Framework Program (FP7/2007–2013) under the Grant Agreement Number 262257. The authors gratefully acknowledge Olivier Mandeville (Château Vaissiere) for kindly providing vineyard and Carlos Rodrigues and Joao Pardao from Silvex (Portugal) for valuable contribution in discussion about plastic film extrusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Gastaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touchaleaume, F., Angellier-Coussy, H., César, G. et al. How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing. J Polym Environ 26, 2588–2600 (2018). https://doi.org/10.1007/s10924-017-1154-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1154-7

Keywords

Navigation