Skip to main content
Log in

Selective Lead(II) Adsorption and Flocculation Characteristics of the Grafted Sodium Alginate: A Comparative Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Synthesis of sodium alginate-g-poly(acrylamide-co-N-methylacrylamide) [S-III], sodium alginate-g-poly(N-methylacrylamide-co-N,N-dimethylacrylamide) [S-II], sodium alginate-g-poly(acrylamide-co-N,N-dimethylacrylamide) [S-I]. Sodium alginate-g-poly(N,N-dimethylacrylamide) [SAG-g-PDMA] and sodium alginate-g-poly(acrylamide) [SAG-g-PAM] were prepared by solution polymerization technique using potassium peroxydisulfate as the initiator at 70 °C in water medium. The graft copolymers were characterized by FTIR and NMR (1H and 13C) spectroscopy, SEM and XRD studies. All the five graft copolymers were used to remove Pb(II) ions from the aqueous solution and also in flocculation studies of kaolin clay (1.0 wt%), silica (1.0 wt%) and iron ore slime (0.25 wt%) suspensions. A comparative studies of all the five graft copolymers were also made in both the two cases. The Pb(II) ion removal capacity of all the graft copolymers follows the order S-III > SAG-g-PAM > S-II > SAG-g-PDMA > S-I. But the flocculation performance of the graft copolymers follows the order S-II > S-I > S-III > SAG-g-PDMA > SAG-g-PAM. S-III was also used for the competitive metal ion removal with Hg(II), Cd(II), Cu(II) and Zn(II). Pb(II) adsorption of S-III (the best Pb(II) ion adsorber) follows pseudo second order rate equation and Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar PS (2013) Environ Prog Sustain Energy 33:55–64

    Article  Google Scholar 

  2. Wang I, Zhang J, Ahao R, Li Y, Zhang C (2010) Bioresour Technol 101:5808–5814

    Article  CAS  Google Scholar 

  3. Deblonde T, Cossu-Leguille C, Hantemann P (2011) Int J Hyg Environ Health 214:442–448

    Article  CAS  Google Scholar 

  4. Knoig TN, Shulami S, Rytwo G (2012) Appl Clay Sci 67–68:119–124

    Google Scholar 

  5. Balasubramanian R, Perumal SV, Vijayaraghavan K (2009) Ind Eng Chem Res 48:2093–2099

    Article  CAS  Google Scholar 

  6. King P, Rakesh N, Beenalahari S, Kumar Y, Prasad VSRK (2007) J Hazard Mater 142:340–347

    Article  CAS  Google Scholar 

  7. Keles E, Ozer AK, Yoruk S (2010) Desalination 253:124–128

    Article  CAS  Google Scholar 

  8. Santhy K, Selvapathy P (2004) Sep Sci Technol 39:3331–3351

    Article  CAS  Google Scholar 

  9. Rivas BL, Pereira ED, Moreno- Villoslada I (2003) Prog Polym Sci 28:173–208

    Article  CAS  Google Scholar 

  10. Rivas RL, Villoslade-moreno I (1998) Macromol Chem Phys 199:1153–1160

    Article  CAS  Google Scholar 

  11. Kolya H, Tripathy T (2013) Int J Biomacrmol 62:557–564

    Article  CAS  Google Scholar 

  12. Sasmal D, Singh RP, Tripathy T (2015) Colloid Surface A 482:575–584

    Article  CAS  Google Scholar 

  13. Kolya H, Tripathy T (2015) Polym Int 64:1336–1351

    Article  CAS  Google Scholar 

  14. Luo X, Liu L, Deng F, Luo S (2013) J Mater Chem A 1:8280–8286

    Article  CAS  Google Scholar 

  15. Kanwal F, Rehman R, Anwar J, Saeed M (2013) Asian J Chem 25:2399–2404

    Article  CAS  Google Scholar 

  16. Bratby J (1980) Coagulation and Flocculation, Chap. 8. Uplands Press, Clayden

  17. Girma KB, Lorenz V, Blaurock S, Edelman FT (2005) Coord Chem Rev 249:1283–1293

    Article  CAS  Google Scholar 

  18. Clayden J, Greeves N, Waren S, Wothers P (2001) Organic chemistry. Oxford University Press, Oxford, p 293

    Google Scholar 

  19. Crini G, Peinday NH, Gimbert F, Robert C (2007) Sep Purif Technol 53:97–110

    Article  CAS  Google Scholar 

  20. Langmuir I (1918) J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  21. Mackay G (1982) J Chem Technol Biotechnol 32(7–12):759–772

    Google Scholar 

  22. Gueu S, Yao B, Adouby K, Ado G (2007) Int J Environ Sci Technol 4:11–17

    Article  CAS  Google Scholar 

  23. M. A. K. Hanaflash, Ibrahim SC, M. Z. A. Yahya (2006) J Appl Sci Res 2:1169–1174

    Google Scholar 

  24. Gupta VK, Ali I (2004) J Collid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  25. Dicninson E, Erikson I (1991) Adv Colloid Interface Sci, 34:1–2

    Article  Google Scholar 

  26. R. P. Singh, Advance turbulent drag reducing and flocculating materials based on polysaccharides (1995), in: P. N. Prasad, J. E. Mark, T. J. Fai (Eds). Polymers and other advance materials, emerging technologies buisiness opportunities. Plenum Press, New York, pp 227–249

    Chapter  Google Scholar 

  27. Brostow W, Pal S, Singh RP (2007) Mater Lett 61:4381–4384

    Article  CAS  Google Scholar 

  28. Kulicke WM, Knievrske R, Klein J (1982) Prog Polym Sci 8:373–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Department of Science and Technology (DST), Govt. of West Bengal [868 (sanc)/ST/P/S & T/15G-9/2015 dated 15.01.2016] for carrying out the research work in earnestly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tridib Tripathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, T., Kolya, H. & Jana, S. Selective Lead(II) Adsorption and Flocculation Characteristics of the Grafted Sodium Alginate: A Comparative Study. J Polym Environ 26, 926–937 (2018). https://doi.org/10.1007/s10924-017-1004-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1004-7

Keywords

Navigation