Skip to main content
Log in

Miscibility, Thermal and Mechanical Properties of Poly(para-dioxanone)/Poly(lactic-co-glycolic acid) Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A series of biodegradable polymers was prepared by solution co-precipitation of poly(para-dioxanone) (PPDO) and poly(lactic-co-glycolic acid) (PLGA) in various blend ratios. Samples were compression-molded into bars using a platen vulcanizing press. The miscibility, thermal and mechanical properties of the materials were investigated using differential scanning calorimetry (DSC), polarized optical microscopy, and scanning electron microscopy (SEM). Dynamic contact angle was used to characterize the water wettability of PLGA/PPDO blends. The mechanical properties of blends and pure polymers were measured by tensile tests. The position of the glass transition temperatures (T g ) was dependent upon composition. When 10 % PLGA was added into PPDO, the DSC curve revealed only one T g (−7.35 °C) which was located between the T g values of PPDO and PLGA. When 20 % PLGA was added into the blend, two independent T g values for PPDO/PLGA blends were observed, and such characteristics improved further upon addition of 30 % PLGA. SEM images of fractured surfaces displayed evidence of the morphology of PPDO/PLGA blends that were consistent with the DSC results. Hence, a relationship was found between homogeneity and the contents of PLGA in the blend. The compatibility of the blends increased with addition of small amounts of PLGA, followed by a leveling-off at higher content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meng ZX, Zheng W, Li L, Zheng YF (2011) Mater Chem Phys 125:606–611

    Article  CAS  Google Scholar 

  2. Yang KK, Wang XL, Wang YZ (2002) J Macromol Sci Polym Rev 42:373–398

    Article  Google Scholar 

  3. Han YR, Jin XY, Yang J, Fan ZY, Lu ZQ, Zhang Y, Li SM (2012) Polym Eng Sci 52:741–750

    Article  CAS  Google Scholar 

  4. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Biomaterials 26:4273–4279

    Article  CAS  Google Scholar 

  5. Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  6. Zhou SB, Deng XM, Li XH, Jia WX, Liu L (2004) J Appl Polym Sci 91:1848–1856

    Article  CAS  Google Scholar 

  7. Wang WJ, Zhou SB, Sun L, Huang C (2010) Carbohyd Polym 79:437–444

    Article  CAS  Google Scholar 

  8. Bessal PC, Casal M, Reis RL (2008) J Tissue Eng Regen M 2:81–96

    Article  Google Scholar 

  9. Bai Y, Ma C, Wang PQ, Fan Z, Bai W, Xiong CD, Tang CM (2012) Polym Compos 33:1700–1776

    Article  CAS  Google Scholar 

  10. Eisenbrey JR, Mualem Burstein O, Wheatley MA (2008) Polym Eng Sci 48:1785–1792

    Article  CAS  Google Scholar 

  11. Bai W, Chen DL, Zhang ZP, Li Q, Zhang DJ, Xiong CD (2009) J Biomed Mater Res Part B 90B:945–951

    Article  CAS  Google Scholar 

  12. Alexis F (2005) Polym Int 54:36–46

    Article  CAS  Google Scholar 

  13. Shen H, Hu XX, Bei JZ (2008) Biomaterials 29:2388–2399

    Article  CAS  Google Scholar 

  14. Bai W, Chen DL, Li Q, Chen HC, Zhang SL, Huang XC, Xiong CD (2009) J Polym Res 16:471–480

    Article  CAS  Google Scholar 

  15. Li QH, Liu JP (2013) Colloid Polym Sci 291:2007–2012

    Article  CAS  Google Scholar 

  16. Samuel C, Raquez J, Dubois P (2013) Polymer 54:3931–3939

    Article  CAS  Google Scholar 

  17. Tsuji H, Okumura A (2011) Polym J 43:317–324

    Article  CAS  Google Scholar 

  18. Terao K, Miyake J, Watanabe J, Ikeda Y (2012) Mater Sci Eng C 32:988–993

    Article  CAS  Google Scholar 

  19. Zhang LL, Xiong CD, Deng XM (1996) Polymer 37:235–241

    Article  CAS  Google Scholar 

  20. Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich B (1998) J Macromol Sci Phys B B3:727–744

    Google Scholar 

  21. Qiu JS, Xing CY, Cao XJ, Wang HT, Wang L, Zhao LP, Li YJ (2013) Macromolecules 46:5806–5814

    Article  CAS  Google Scholar 

  22. Aouak T, Alarifi AS, Ouladsmane M (2012) J Appl Polym Sci 125:2262–2270

    Article  CAS  Google Scholar 

  23. Zhao LF, Peng XY, Liu X, Wang YM, Qiu SX, Zhang J (2013) Polym J 45:1–9

    Article  CAS  Google Scholar 

  24. Papageorgiou GZ, Grigoriadou I, Andriotis E, Bikiaris DN, Panayiotou C (2013) Ind Eng Chem Res 52:11948–11955

    Article  CAS  Google Scholar 

  25. Bai W, Chen DL, Li Q, Zhang ZP, Xiong CD (2009) Prog Chem 21:2696–2703

    CAS  Google Scholar 

  26. Li G, Zhao N, Bai W, Chen DL, Xiong CD (2010) E-polymers 51:1–6

    Google Scholar 

  27. Bai W, Zhang ZP, Li Q, Chen DL, Chen HC, Zhao N, Xiong CD (2009) Polym Int 58:183–189

    Article  CAS  Google Scholar 

  28. Bai W, Zhang LF, Li Q, Chen DL, Xiong CD (2010) Mater Chem Phys 122:79–86

    Article  CAS  Google Scholar 

  29. Müller AJ, Balsamo V, Arnal ML (2005) Adv Polym Sci 190:1–63

    Article  Google Scholar 

  30. Sabino MA (2007) Polym Degrad Stab 92:986–996

    Article  CAS  Google Scholar 

  31. Pezzin APT, Alberda van Ekenstein GOR, Zavagli CAC, Brinke GT, Duek EAR (2003) J Appl Polym Sci 88:2744–2755

    Article  CAS  Google Scholar 

  32. Chen SC, Wang XL, Wang YZ, Yang KK, Zhou ZX, Wu G (2007) J Biomed Mater Res 80A:453–465

    Article  CAS  Google Scholar 

  33. Tsuji H, Ikada Y (1996) Polymer 37:595–602

    Article  CAS  Google Scholar 

  34. Bai Y, Luo PY, Wang PQ, Bai W, Xiong CD, Tang CM (2013) J Polym Environ 21:1013–1025

    Article  Google Scholar 

  35. Giller CB, Roland CM (2013) Macromolecules 46:2818–2822

    Article  CAS  Google Scholar 

  36. Bernal A, Kuritka I, Saha P (2013) J Appl Polym Sci 127:3560–3568

    Article  CAS  Google Scholar 

  37. Diban N, Haimi S, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot A, Grijpma D, Stamatialis D (2013) Acta Biomater 9:6450–6458

    Article  CAS  Google Scholar 

  38. Pan PJ, Zhao L, Yang JJ, Inoue Y (2013) Macromol Mater Eng 298:201–209

    Article  CAS  Google Scholar 

  39. Zhang RY, Ma PX (2004) Macromol Biosci 4:100–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51103156), and the West Light Foundation of The Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wang, P., Bai, W. et al. Miscibility, Thermal and Mechanical Properties of Poly(para-dioxanone)/Poly(lactic-co-glycolic acid) Blends. J Polym Environ 23, 367–373 (2015). https://doi.org/10.1007/s10924-014-0686-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0686-3

Keywords

Navigation