Skip to main content
Log in

Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we shall establish the superconvergence properties of the Runge-Kutta discontinuous Galerkin method for solving two-dimensional linear constant hyperbolic equation, where the upwind-biased numerical flux is used. By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions, we obtain the superconvergence results on the node averages, the numerical fluxes, the cell averages, the solution and the spatial derivatives. The superconvergence properties in space are preserved as the semi-discrete method, and time discretization solely produces an optimal order error in time. Some numerical experiments also are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72(2), 761–791 (2017)

    Article  MathSciNet  Google Scholar 

  2. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017)

    Article  MathSciNet  Google Scholar 

  3. Cao, W., Li, D., Zhang, Z.: Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations. Commun. Comput. Phys. 21(1), 211–236 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53(4), 1651–1671 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cao, W., Shu, C.-W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM Math. Model. Numer. Anal. 51(6), 2213–2235 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin methods for one-dimensional linear parabolic equations. Math. Comput. 85(297), 63–84 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. J. Sci. Comput. 77(3), 1402–1423 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52(5), 2555–2573 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comput. 86(305), 1233–1267 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227(22), 9612–9627 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  13. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computer Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)

    Chapter  Google Scholar 

  14. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  16. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991)

    Article  MathSciNet  Google Scholar 

  19. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  20. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  21. Guo, L., Yang, Y.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations with singular initial data. Int. J. Numer. Anal. Model. 14(3), 342–354 (2017)

    MathSciNet  MATH  Google Scholar 

  22. King, J., Mirzaee, H., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: improved errors versus higher-order accuracy. J. Sci. Comput. 53(1), 129–149 (2012)

    Article  MathSciNet  Google Scholar 

  23. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of discontinuous Galerkin methods with upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. J. Sci. Comput. 78(3), 1305–1328 (2019)

    Article  MathSciNet  Google Scholar 

  24. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)

    Article  MathSciNet  Google Scholar 

  25. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory report LA-UR-73-479 (1973)

  26. Ryan, J., Shu, C.-W., Atkins, H.: Extension of a postprocessing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci. Comput. 26(3), 821–843 (2005)

    Article  MathSciNet  Google Scholar 

  27. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Numerical Solutions of Partial Differential Equations, Advanced Mathematics Training Courses, pp. 149–201. CRM Barcelona, Birkhäuser, Basel (2009)

  28. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  29. Wang, H., Zhang, Q., Shu, C.-W.: Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81(3), 2080–2114 (2019)

    Article  MathSciNet  Google Scholar 

  30. Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge-Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84, 23 (2020)

    Article  MathSciNet  Google Scholar 

  31. Xu, Y., Shu, C.-W., Zhang, Q.: Error estimate of the fourth-order Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The \(L^2\)-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50(6), 3110–3133 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Yuan Xu is supported by the NSFC Grant 11671199. Qiang Zhang is supported by the NSFC Grant 11671199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix A

Appendix A

In this section, we supplement some technical proofs.

1.1 Proofs of (37)

As an example, below we present the detailed proof with respect to \(\Vert [\![\mathbb {F}_{1,p}w]\!]\Vert _{L^2(\varGamma _{\!h}^2)}\). It depends on the one-dimensional correction technique.

Fix \(y\in [0,1]\) and assume \(v(x,y^{\pm })\in H^1(I_h)\). For \(0\leqslant p\leqslant k\), the correction function along the x-direction is defined in the form [30]

$$\begin{aligned} \mathbb {F}_{1,p}^\mathrm{1d}v(x,y^{\pm })=(-\mathbb {X}_{\theta _1}\partial _{x}^{-1})^p (\mathbb {X}_{\frac{1}{2}}-\mathbb {X}_{\theta _1})v(x,y^{\pm }) \in \mathcal {P}^k(I_h). \end{aligned}$$
(A1)

Consider the separation function \(v(x,y)=v_1(x)v_2(y)\), where either \(v_1(x)\) or \(v_2(y)\) is the piecewise polynomial of degree at most k. A direct application of (20) yields

$$\begin{aligned} \big (\mathbb {F}_{1,p}v\big )^\pm _{x,j\mp \frac{1}{2}} -\mathbb {F}_{1,p}^\mathrm{1d}\big (v^\pm _{x,j\mp \frac{1}{2}}\big ) = (\mathbb {F}_{1,p}^\mathrm{1d}v_1) \Big [(\mathbb {Y}_{\frac{1}{2}}v_2)^\pm _{j\mp \frac{1}{2}}-(v_2)^\pm _{j\mp \frac{1}{2}}\Big ]=0. \end{aligned}$$

As we have mentioned in Remark 2, we have

$$\begin{aligned} \big (\mathbb {F}_{1,p}v\big )^\pm _{x,j\mp \frac{1}{2}} -\mathbb {F}_{1,p}^\mathrm{1d}\big (v^\pm _{x,j\mp \frac{1}{2}}\big )=0, \quad \forall v\in \mathcal {P}^{2k+1}(\varOmega _h). \end{aligned}$$
(A2)

Note that \(\mathbb {F}_{1,p}^\mathrm{1d}(w^+_{x,j+1/2})=\mathbb {F}_{1,p}^\mathrm{1d}(w^-_{x,j+1/2})\), since \(w\in H^R(\varOmega )\subset H^2(\varOmega )\) is continuous. Then using (A2) and the triangle inequality, we get \(\Vert [\![\mathbb {F}_{1,p}w]\!]\Vert _{L^2(\varGamma _{\!h}^2)}\leqslant ({\text{I}})+({\text{II}})\), where

$$\begin{aligned} \begin{aligned} {\rm{(I)}}&=\Vert (\mathbb {F}_{1,p}(w-v))^{+}\Vert _{L^2(\varGamma _{\!h}^2)}+\Vert (\mathbb {F}_{1,p}(w-v))^{-}\Vert _{L^2(\varGamma _{\!h}^2)}, \\ {\rm{(II)}}&=\Vert \mathbb {F}_{1,p}^\mathrm{1d}(w-v)^{+}\Vert _{L^2(\varGamma _{\!h}^2)}+\Vert \mathbb {F}_{1,p}^\mathrm{1d}(w-v)^{-}\Vert _{L^2(\varGamma _{\!h}^2)}. \end{aligned} \end{aligned}$$

Each term in (I) is bounded in the form

$$\begin{aligned} \Vert (\mathbb {F}_{1,p}(w-v))^{\pm }\Vert _{L^2(\varGamma _{\!h}^2)} \leqslant Ch^{-\frac{1}{2}}\Vert \mathbb {F}_{1,p}(w-v)\Vert _{L^2(\varOmega _h)} \leqslant Ch^{-\frac{1}{2}}h^{p+1}\Vert w-v\Vert _{H^{1}(\varOmega )}, \end{aligned}$$
(A3)

where the inverse inequality (9b) and Lemma 3 with \(R=1\) are used. Each term in (II) is bounded in the form

$$\begin{aligned} \Vert \mathbb {F}_{1,p}^\mathrm{1d}(w-v)^{\pm }\Vert _{L^2(\varGamma _{\!h}^2)} \leqslant Ch^{p+1}\Vert (w-v)^{\pm }\Vert _{H^1(\varGamma _h^2)}, \end{aligned}$$
(A4)

where the result in [30, Lemma 4.3] is used for any horizontal edges. Finally using (21), we can get the boundedness of \(\Vert [\![\mathbb {F}_{1,p}w]\!]\Vert _{L^2(\varGamma _{\!h}^2)}\) as stated in (37).

Similarly, we can get the boundedness of the second term in (37), by showing

$$\begin{aligned} \partial _y(\mathbb {F}_{1,p} v)-\mathbb {F}_{1,p}(\partial _y v)=0, \quad \forall v\in \mathcal {P}^{2k+1}(\varOmega _h). \end{aligned}$$
(A5)

The detailed process is omitted here.

1.2 Proof of (59)

It is easy to prove the right inequality by taking \(v=\mathbb {H}_1 w\) in (39) and using Lemma 1. To prove the left inequality, we start from the formulation for any function \(w(x,y)\in V_h\), namely

$$\begin{aligned} w(x,y)=\sum _{i}\sum _{j}\sum _{\kappa }\sum _{\ell } w_{ij}^{\kappa ,\ell } L^x_{i,\kappa }(x)L^y_{j,\ell }(y) = \sum _{j}\sum _{\ell }w_{j,\ell }(x)L^y_{j,\ell }(y). \end{aligned}$$

For simplification of notations, the ranges in the summations are omitted. Due to the \(L^2\)-orthogonality of \(L^y_{j,\ell }(y)\), we can easily get that

$$\begin{aligned} \begin{aligned} \Vert \partial _x w(x,y)\Vert _{L^2(\varOmega _h)}^2&= \sum _{j}\sum _{\ell } \Vert \partial _xw_{j,\ell }(x)\Vert _{L^2(0,1)}^2 \Vert L^y_{j,\ell }(y)\Vert _{L^2(J_j)}^2, \\ \Vert \mathbb {H}_1w(x,y)\Vert _{L^2(\varOmega _h)}^2&= \sum _{j}\sum _{\ell } \Vert \mathbb {H}_1w_{j,\ell }(x)\Vert _{L^2(0,1)}^2 \Vert L^y_{j,\ell }(y)\Vert _{L^2(J_j)}^2, \end{aligned} \end{aligned}$$

where (55) has been used in the second conclusion. Then we can prove the left inequality using the inequality [29] for the single-variable function

$$\begin{aligned} \Vert \partial _x w_{j,\ell }(x)\Vert _{L^2(0,1)} \leqslant C\Vert \mathbb {H}_1 w_{j,\ell }(x)\Vert _{L^2(0,1)}, \quad j=1,2,\cdots , N_x, \quad \ell =0,1,\cdots ,k. \end{aligned}$$

1.3 Proof of (64)

Since \(w\in H^3(\varOmega )\) is continuous everywhere, we have

$$\begin{aligned} \{\!\!\{\mathbb {G}_{\theta _1,\theta _2}^\perp w\}\!\!\}^{\theta _1,y}_{i+\frac{1}{2},y}=\mathbb {Y}_{\theta _2}^\perp w(x_{i+\frac{1}{2}},y), \quad i=1,2,\cdots , N_x, \quad y\in [0,1]. \end{aligned}$$

It has been proved in [30, Lemma 5.3] for every i that

$$\begin{aligned} \mathrm{RMS}\{\{\!\!\{\mathbb {Y}_{\theta _2}^\perp w(x_{i+\frac{1}{2}},y)\}\!\!\}^{\theta _1,y}_{i+\frac{1}{2},y} :y\in S_h^{\mathrm{R},y}\}&\leqslant Ch^{k+2}\Vert w(x_{i+\frac{1}{2}},\cdot )\Vert _{H^{k+2}(0,1)}, \\ \mathrm{RMS}\{\{\!\!\{\partial _y \mathbb {Y}_{\theta _2}^\perp w(x_{i+\frac{1}{2}},y)\}\!\!\}^{\theta _1,y}_{i+\frac{1}{2},y} :y\in S_h^{\mathrm{L},y}\}&\leqslant Ch^{k+1}\Vert w(x_{i+\frac{1}{2}},\cdot )\Vert _{H^{k+2}(0,1)}, \end{aligned}$$

which together with the standard trace inequity [12] yield (64a).

The proof of (64b) is almost the same, so omitted here. In what follows we devote to proving (64c).

The proof depends on the local projection related to (62), the parameter-dependent Radau polynomials. For any given function \(w\in L^2(\varOmega _h)\), the projection \(\mathbb {C}w\) is defined element by element, namely,

$$\begin{aligned} \mathbb {C}w|_{K_{ij}} = \mathbb {R}w|_{K_{ij}} -w_{i,j}^{k+1,0}R^x_{i,k+1}(x) -w_{i,j}^{0,k+1}R^y_{j,k+1}(y), \end{aligned}$$
(A6)

which belongs to \(\mathcal {P}^{k+1}(K_{ij})\cap \mathcal {Q}^k(K_{ij})\). Here

$$\begin{aligned} \mathbb {R}w|_{K_{ij}} =\sum _{0\leqslant \ell _1+\ell _2\leqslant k+1} w_{i,j}^{\ell _1,\ell _2}L^x_{i,\ell _1}(x)L^y_{j,\ell _2}(y) \end{aligned}$$
(A7)

is the \(L^2\) projection of w onto \(\mathcal {P}^{k+1}(K_{ij})\). Note that the definition of this local projection is a little different to that in [2, 30], and we do not need to discuss whether \(\vartheta ^x_i\) and/or \(\vartheta ^y_j\) are equal to 0.

Let \(\mathbb {C}^\perp w=w-\mathbb {C}w\) be the projection error. By standard scaling argument, we have the approximation property

$$\begin{aligned} \Vert \mathbb {C}^\perp w\Vert _{L^2(\varOmega _h)} +h\Vert \mathbb {C}^\perp w\Vert _{H^{1}(\varOmega _h)} +h^2\Vert \mathbb {C}^\perp w\Vert _{H^{2}(\varOmega _h)} \leqslant Ch^{\min (R,k+1)}\Vert w\Vert _{H^{R}(\varOmega _h)}. \end{aligned}$$
(A8)

Furthermore, we can easily obtain the following lemmas.

Lemma A1

There exists a constant \(C>0\) independent of h and w, such that

$$\begin{aligned} \vert \!\vert \!\vert {\mathbb {C}^\perp w}\vert \!\vert \!\vert _{L^2(S_h^\mathrm{R,R})} +h\vert \!\vert \!\vert {\partial _x(\mathbb {C}^\perp w)}\vert \!\vert \!\vert _{L_y^2(S_h^{\mathrm{L},x})} +h\vert \!\vert \!\vert {\partial _y(\mathbb {C}^\perp w)}\vert \!\vert \!\vert _{L_x^2(S_h^{\mathrm{L},y})} \leqslant C h^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}. \end{aligned}$$

Proof

As the applications of the Bramble-Hilbert lemma and the scaling argument, it is sufficient to prove for any \(w\in \mathcal {P}^{k+1}(K_{ij})\) that

$$\begin{aligned} \mathbb {C}^\perp w(x,y)&=0, \quad x\in S_h^{\mathrm{R},x},\quad y\in S_h^{\mathrm{R},y}, \\ \partial _x(\mathbb {C}^\perp w) (x,y)&=0, \quad x\in S_h^{\mathrm{R},x},\quad y\in J_j, \\ \quad \partial _y(\mathbb {C}^\perp w) (x,y)&=0, \quad x\in I_i,\quad y\in S_h^{\mathrm{R},y}, \end{aligned}$$

which is implied by the definition of projection \(\mathbb {C}\), say (A6).

Lemma A2

There exists a constant \(C>0\) independent of h and w, such that

$$\begin{aligned} \Vert \mathbb {G}_{\theta _1,\theta _2}w - \mathbb {C}w\Vert _{L^2(\varOmega _h)} \leqslant Ch^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}. \end{aligned}$$

Proof

By the definitions of \(\mathbb {G}_{\theta _1,\theta _2}\) and \(\mathbb {C}\), we have

$$\begin{aligned} (\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})w = (\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})\mathbb {R}^\perp w +(\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})w_1 +(\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})w_2, \end{aligned}$$
(A9)

where \(\mathbb {R}w\) is the \(L^2\) projection of w onto \(\mathcal {P}^k(\varOmega _h)\), and \(\mathbb {R}^\perp w=w-\mathbb {R}w\) is the projection error. Here \(w_1\) and \(w_2\) are defined element-by-element by

$$\begin{aligned} w_1|_{K_{ij}}=w_{i,j}^{k+1,0}L^x_{i,k+1}(x), \quad w_2|_{K_{ij}}=w_{i,j}^{0,k+1}L^y_{j,k+1}(y). \end{aligned}$$
(A10)

Next we will estimate each term on the right-hand side of (A9).

Using the approximation properties of projections (16) and (A8), as well as the approximation property of projection \(\mathbb {R}\) (refer to (21)), we get

$$\begin{aligned} \Vert (\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})\mathbb {R}^\perp w\Vert _{L^2(\varOmega _h)} \leqslant Ch^2\Vert \mathbb {R}^\perp w\Vert _{H^{2}(\varOmega )} \leqslant Ch^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}. \end{aligned}$$

After some technical and direct manipulations, almost the same as that in [30], we also have

$$\begin{aligned} \Vert (\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})w_1\Vert _{L^2(\varOmega _h)} +\Vert (\mathbb {G}_{\theta _1,\theta _2}- \mathbb {C})w_2\Vert _{L^2(\varOmega _h)} \leqslant Ch^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}, \end{aligned}$$
(A11)

where definition (61), with respect to \(\{\vartheta ^x_{i}\}_{i=1}^{N_x}\) and \(\{\vartheta ^y_{j}\}_{j=1}^{N_y}\), plays an important role. For more details, please see [30].

Finally, summing up the above conclusions yields this lemma.

Using the inverse inequity \(\Vert v\Vert _{L^\infty (\varOmega _h)}\leqslant C h^{-1}\Vert v\Vert _{L^2(\varOmega _h)}\) for \(v\in V_h\), Lemma A2 implies

$$\begin{aligned} \vert \!\vert \!\vert {(\mathbb {G}_{\theta _1,\theta _2}-\mathbb {C}) w}\vert \!\vert \!\vert _{L^2(S_h^\mathrm{R,R})} \leqslant C\Vert (\mathbb {G}_{\theta _1,\theta _2}-\mathbb {C})w\Vert _{L^2(\varOmega _h)} \leqslant Ch^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}. \end{aligned}$$

Hence it follows from Lemma A1 that

$$\begin{aligned} \vert \!\vert \!\vert {\mathbb {G}_{\theta _1,\theta _2}^\perp w}\vert \!\vert \!\vert _{L^2(S_h^\mathrm{R,R})} \leqslant \vert \!\vert \!\vert {\mathbb {C}^\perp w}\vert \!\vert \!\vert _{L^2(S_h^\mathrm{R,R})} +\vert \!\vert \!\vert {(\mathbb {G}_{\theta _1,\theta _2}-\mathbb {C}) w}\vert \!\vert \!\vert _{L^2(S_h^\mathrm{R,R})} \leqslant Ch^{k+2}\Vert w\Vert _{H^{k+2}(\varOmega )}. \end{aligned}$$

The others can be estimated similarly. Now we complete the proof of (54).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Q. Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation. Commun. Appl. Math. Comput. 4, 319–352 (2022). https://doi.org/10.1007/s42967-020-00116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00116-z

Keywords

Mathematics Subject Classification

Navigation