Skip to main content
Log in

A Positivity-Preserving and Robust Fast Solver for Time-Fractional Convection–Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a fast solver for time-fractional two-dimensional convection-diffusion problems that maintains non-negativity of numerical solutions. To this end, two new techniques are developed. (i) A three-part decomposition of the L1 discretization for Caputo derivatives is proposed and justified for fast evaluation while maintaining positivity; (ii) A positivity-correction technique is devised for both diffusive and convective fluxes. An upwinding technique for the bilinear finite volume approximation on general quadrilaterals is utilized for enabling the solver robustness in handling convection dominance. The solver attains optimal convergence rates when graded temporal meshes are used. These properties are theoretically justified and numerically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baffet, D.: A Gauss–Jacobi kernel compression scheme for fractional differential equations. J. Sci. Comput. 79, 227–248 (2019)

    Article  MathSciNet  Google Scholar 

  3. Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72, 1169–1195 (2017)

    Article  MathSciNet  Google Scholar 

  4. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  Google Scholar 

  5. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bueno-Orovio, A., Teh, I., Schneider, J.E., Burrage, K., Grau, V.: Anomalous diffusion in cardiac tissue as an index of myocardial microstructure. IEEE Trans. Med. Imaging 35(9), 2200–2207 (2016)

    Article  PubMed  Google Scholar 

  7. Cao, J., Xiao, A., Bu, W.: Finite difference/finite element method for tempered time fractional advection-dispersion equation with fast evaluation of Caputo derivative. J. Sci. Comput. 83, 1–29 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chang, A., Sun, H., Zheng, C., Lu, B., Lu, C., Ma, R., Zhang, Y.: A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Phys. A 502, 356–369 (2018)

    Article  MathSciNet  CAS  Google Scholar 

  9. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 29, 1–124 (2020)

    Article  MathSciNet  Google Scholar 

  10. Diethelm, K., Freed, A.D.: An efficient algorithm for the evaluation of convolution integrals. Comput. Math. Appl. 51(1), 51–72 (2006)

    Article  MathSciNet  Google Scholar 

  11. Fallahgoul, H., Focardi, S., Fabozzi, F.: Fractional calculus and fractional processes with applications to financial economics: theory and application. Academic Press, Cambridge (2016)

    Google Scholar 

  12. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 333–346 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gao, Y., Yuan, G., Wang, S., Hang, X.: A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes. J. Comput. Phys. 407, 109143 (2020)

    Article  MathSciNet  Google Scholar 

  15. Harper, G., Liu, J., Tavener, S., Wildey, T.: Coupling Arbogast–Correa and Bernardi–Raugel elements to resolve coupled Stokes–Darcy flow problems. Comput. Methods Appl. Mech. Eng. 373, 113469 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  17. Ionescu, C., Lopes, A., Copot, D., Machado, J., Bates, J.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jannelli, A.: Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations. Commun. Nonlinear Sci. Numer. Simul. 105, 106073 (2022)

    Article  MathSciNet  Google Scholar 

  19. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62, 783–794 (2019)

    Article  MathSciNet  Google Scholar 

  21. Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations. Math. Comput. 86, 2239–2260 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  Google Scholar 

  23. Kopteva, N.: Maximum principle for time-fractional parabolic equations with a reaction coefficient of arbitrary sign. Appl. Math. Lett. 132, 108209 (2022)

    Article  MathSciNet  Google Scholar 

  24. Kumar, D., Singh, J.: Fractional Calculus in Medical and Health Science. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  25. Lan, B., Sheng, Z., Yuan, G.: A new positive finite volume scheme for two-dimensional convection-diffusion equation. Z. Angew. Math. Mech. 99, e201800067 (2019)

    Article  MathSciNet  Google Scholar 

  26. Li, C., Wang, Z.: Numerical methods for the time-fractional convection-diffusion-reaction equation. Numer. Funct. Anal. Optim. 42, 1115–1153 (2021)

    Article  MathSciNet  Google Scholar 

  27. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lu, C., Huang, W., Qiu, J.: Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems. Numer. Math. 127, 515–537 (2014)

    Article  MathSciNet  Google Scholar 

  29. Lu, C., Huang, W., Vleck, E.S.V.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ngondiep, E.: A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 111, 106444 (2022)

    Article  MathSciNet  Google Scholar 

  32. Ngondiep, E.: A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivative. Numer. Algorithms 91, 681–700 (2023)

    Article  MathSciNet  Google Scholar 

  33. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitray Order, Mathematics in Science and Engineering, vol. 111. Academic Press, Cambridge (1974)

    Google Scholar 

  34. Roul, P., Rohil, V.: A high-order numerical scheme based on graded mesh and its analysis for the two-dimensional time-fractional convection-diffusion equation. Comput. Math. Appl. 126, 1–13 (2022)

    Article  MathSciNet  Google Scholar 

  35. Sahoo, S.K., Gupta, V.: A robust uniformly convergent finite difference scheme for the time-fractional singularly perturbed convection-diffusion problem. Comput. Math. Appl. 137, 126–146 (2023)

    Article  MathSciNet  Google Scholar 

  36. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2016)

    Article  MathSciNet  Google Scholar 

  37. Sun, H., Cao, W.: A fast temporal second-order difference scheme for the time-fractional subdiffusion equation. Numer. Meth. PDEs 37(3), 1825–1846 (2021)

    Article  MathSciNet  Google Scholar 

  38. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  ADS  Google Scholar 

  39. Tayebi, A., Shekari, Y., Heydari, M.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003)

    Book  Google Scholar 

  41. Wu, J., Gao, Z.: Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids. J. Comput. Phys. 275, 569–588 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. Appl. Math. Comput. 387, 124564 (2020)

    MathSciNet  Google Scholar 

  43. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  44. Yang, X., Zhang, H., Zhang, Q., Yuan, G., Sheng, Z.: The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker–Planck equations on distorted meshes. Appl. Math. Lett. 97, 99–106 (2019)

    Article  MathSciNet  Google Scholar 

  45. Yang, Z., Zeng, F.: A corrected L1 method for a time-tractional subdiffusion equation. J. Sci. Comput. 95(3), 85 (2023)

    Article  Google Scholar 

  46. Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  47. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  49. Zhang, G., Huang, C., Alikhanov, A.A., Yin, B.: A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen–Cahn equation. J. Sci. Comput. 96(2), 39 (2023)

    Article  MathSciNet  Google Scholar 

  50. Zhang, J., Zhang, X., Yang, B.: An approximation scheme for the time fractional convection-diffusion equation. Appl. Math. Comput. 335, 305–312 (2018)

    MathSciNet  Google Scholar 

  51. Zhu, H., Xu, C.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 57, 2829–2849 (2019)

    Article  MathSciNet  Google Scholar 

  52. Zhuang, P., Gu, Y., Liu, F., Turner, I., Yarlagadda, P.: Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Eng. 88, 1346–1362 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y.Li was partially supported by the National Natural Science Foundation of China (Grant No.12071177). J.Liu was partially supported by US National Science Foundation under Grant DMS-2208590. We sincerely thank the anonymous reviewers, whose comments have helped improve the quality of this paper, and also Prof. Guangwei Yuan, with whom we have meaningful discussion about certain techniques in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangguo Liu.

Ethics declarations

Conflict of interests

All authors declare no conflict of interests.

Data Availability

The data related to this manuscript will be available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Li, Y. & Liu, J. A Positivity-Preserving and Robust Fast Solver for Time-Fractional Convection–Diffusion Problems. J Sci Comput 98, 59 (2024). https://doi.org/10.1007/s10915-024-02454-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02454-z

Keywords

Mathematics Subject Classification

Navigation