Skip to main content
Log in

Entropy Stable Discontinuous Galerkin Schemes for Two-Fluid Relativistic Plasma Flow Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article proposes entropy stable discontinuous Galerkin schemes (DG) for two-fluid relativistic plasma flow equations. These equations couple the flow of relativistic fluids via electromagnetic quantities evolved using Maxwell’s equations. The proposed schemes are based on the Gauss–Lobatto quadrature rule, which has the summation by parts property. We exploit the structure of the equations having the flux with three independent parts coupled via nonlinear source terms. We design entropy stable DG schemes for each flux part, coupled with the fact that the source terms do not affect entropy, resulting in an entropy stable scheme for the complete system. The proposed schemes are then tested on various test problems in one and two dimensions to demonstrate their accuracy and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Abramowitz, M., Stegun, I.A., Miller, D.: Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards applied mathematics series no. 55). J. Appl. Mech. 32(1), 239–239 (1965). https://doi.org/10.1115/1.3625776

    Article  Google Scholar 

  2. Amano, T.: A second-order divergence-constrained multidimensional numerical scheme for relativistic two-fluid electrodynamics. Astrophys. J. 831(1), 100 (2016). https://doi.org/10.3847/0004-637x/831/1/100

    Article  Google Scholar 

  3. Amano, T., Kirk, J.G.: The role of superluminal electromagnetic waves in pulsar wind termination shocks. Astrophys. J. 770(1), 18 (2013). https://doi.org/10.1088/0004-637X/770/1/18

    Article  Google Scholar 

  4. Anile, A.M.: Relativistic Fluids and Magneto-fluids. Cambridge Press, New York (1990). https://doi.org/10.1017/cbo9780511564130

  5. Anton, L., Miralles, J.A., Marti, J.M., Ibez, J.M., Aloy, M.A., Mimica, P.: Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver. Astrophys. J. Suppl. Ser. 188(1), 1–31 (2010). https://doi.org/10.1088/0067-0049/188/1/1

    Article  Google Scholar 

  6. Baboolal, S.: Finite-difference modeling of solitons induced by a density hump in a plasma multi-fluid. Math. Comput. Simul. 55(4–6), 309–316 (2001). https://doi.org/10.1016/S0378-4754(00)00310-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Balsara, D.: Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser. 132(1), 83–101 (2001). https://doi.org/10.1086/318941

    Article  Google Scholar 

  8. Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016). https://doi.org/10.1016/j.jcp.2016.05.006

    Article  MathSciNet  MATH  Google Scholar 

  9. Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016). https://doi.org/10.1016/j.jcp.2016.02.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Barkov, M., Komissarov, S.S., Korolev, V., Zankovich, A.: A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 438(1), 704–716 (2014). https://doi.org/10.1093/mnras/stt2247

    Article  Google Scholar 

  11. Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys. (2020). https://doi.org/10.1007/s00033-020-1250-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhoriya, D., Kumar, H., Chandrashekar, P.: High-order finite-difference entropy stable schemes for two-fluid relativistic plasma flow equations (2022). ArXiv:2210.08568 [physics]

  13. Birn, J., Drake, J.F., Shay, M.A., Rogers, B.N., Denton, R.E., Hesse, M., Kuznetsova, M., Ma, Z.W., Bhattacharjee, A., Otto, A., Pritchett, P.L.: Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Sp. Phys. 106(A3), 3715–3719 (2001). https://doi.org/10.1029/1999ja900449

    Article  Google Scholar 

  14. Biswas, B., Kumar, H., Bhoriya, D.: Entropy stable discontinuous Galerkin schemes for the special relativistic hydrodynamics equations. Comput. Math. Appl. 112, 55–75 (2022). https://doi.org/10.1016/j.camwa.2022.02.019

    Article  MathSciNet  MATH  Google Scholar 

  15. Biswas, B., Kumar, H., Yadav, A.: Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations. J. Comput. Phys. 431, 110148 (2021). https://doi.org/10.1016/j.jcp.2021.110148

    Article  MathSciNet  MATH  Google Scholar 

  16. Blandford, R., Meier, D., Readhead, A.: Relativistic jets from active galactic nuclei. Ann. Rev. Astron. Astrophys. 57(1), 467–509 (2019). https://doi.org/10.1146/annurev-astro-081817-051948

    Article  Google Scholar 

  17. Bond, D.M., Wheatley, V., Samtaney, R.: Plasma flow simulation using the two-fluid model. In: Proceedings of the 20th Australasian Fluid Mechanics Conference, AFMC 2016 (2016)

  18. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014). https://doi.org/10.1137/130932193

    Article  MathSciNet  MATH  Google Scholar 

  19. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a

    Article  MathSciNet  MATH  Google Scholar 

  20. Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D cartesian meshes. SIAM J. Numer. Anal. 54(2), 1313–1340 (2016). https://doi.org/10.1137/15M1013626

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015). https://doi.org/10.1002/cpa.21537

    Article  MathSciNet  MATH  Google Scholar 

  23. Del Zanna, L., Zanotti, O., Bucciantini, N., Londrillo, P.: ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron. Astrophys. 473(1), 11–30 (2007). https://doi.org/10.1051/0004-6361:20077093

    Article  Google Scholar 

  24. Duan, J., Tang, H.: High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics. J. Comput. Phys. 421, 109731 (2020). https://doi.org/10.1016/j.jcp.2020.109731

    Article  MathSciNet  MATH  Google Scholar 

  25. Duan, J., Tang, H.: Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics. J. Comput. Phys. 426, 109949 (2021). https://doi.org/10.1016/J.JCP.2020.109949

    Article  MathSciNet  MATH  Google Scholar 

  26. Duan, J., Tang, H.: High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics. J. Comput. Phys. 431, 110136 (2021). https://doi.org/10.1016/j.jcp.2021.110136

    Article  MathSciNet  MATH  Google Scholar 

  27. Duan, J., Tang, H.: High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics. J. Comput. Phys. 456, 111038 (2022). https://doi.org/10.1016/j.jcp.2022.111038

    Article  MathSciNet  MATH  Google Scholar 

  28. Falle, S.A., Komissarov, S.S.: An upwind numerical scheme for relativistic hydrodynamics with a general equation of state. Mon. Not. R. Astron. Soc. 278(2), 586–602 (1996). https://doi.org/10.1093/MNRAS/278.2.586

    Article  Google Scholar 

  29. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961

    Article  MathSciNet  MATH  Google Scholar 

  30. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9

    Article  MathSciNet  MATH  Google Scholar 

  31. Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.R., Gassner, G.J., Carpenter, M.H.: Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. J. Sci. Comput. 80(1), 175–222 (2019). https://doi.org/10.1007/s10915-019-00933-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Gallant, Y.A., Arons, J.: Structure of relativistic shocks in pulsar winds: a model of the wisps in the Crab Nebula. Astrophys. J. 435, 230 (1994). https://doi.org/10.1086/174810

    Article  Google Scholar 

  33. Gallego-Valencia, J.P., Klingenberg, C., Chandrashekar, P.: On limiting for higher order discontinuous Galerkin method for 2D Euler equations. Bull. Braz. Math. Soc. 47(1), 335–345 (2016). https://doi.org/10.1007/s00574-016-0142-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Gammie, C.F., McKinney, J.C., Toth, G.: HARM: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J. 589(1), 444–457 (2003). https://doi.org/10.1086/374594

    Article  Google Scholar 

  35. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016). https://doi.org/10.1016/j.amc.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  36. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013

    Article  MathSciNet  MATH  Google Scholar 

  37. Godlewski, E., Pierre-Arnaud, R.: Hyperbolic Systems of Conservation Laws. Ellipses-Edition Marketing, Paris (1991)

    MATH  Google Scholar 

  38. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  39. Hakim, A., Loverich, J., Shumlak, U.: A high resolution wave propagation scheme for ideal Two-Fluid plasma equations. J. Comput. Phys. 219(1), 418–442 (2006). https://doi.org/10.1016/j.jcp.2006.03.036

    Article  MathSciNet  MATH  Google Scholar 

  40. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithmus, Analysis, and Applications, Texts in Applied Mathematics, vol. 54. Springer New York, New York (2000). https://doi.org/10.1007/978-0-387-72067-8

    Book  Google Scholar 

  41. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  MATH  Google Scholar 

  42. Kim, J., Balsara, D.S.: A stable HLLC Riemann solver for relativistic magnetohydrodynamics. J. Comput. Phys. 270, 634–639 (2014). https://doi.org/10.1016/j.jcp.2014.04.023

    Article  MathSciNet  MATH  Google Scholar 

  43. Komissarov, S.S.: A Godunov-type scheme for relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 303(2), 343–366 (1999). https://doi.org/10.1046/j.1365-8711.1999.02244.x

    Article  Google Scholar 

  44. Komissarov, S.S.: Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 382(3), 995–1004 (2007). https://doi.org/10.1111/j.1365-2966.2007.12448.x

    Article  Google Scholar 

  45. Kumar, H., Mishra, S.: Entropy stable numerical schemes for two-fluid plasma equations. J. Sci. Comput. 52(2), 401–425 (2012). https://doi.org/10.1007/s10915-011-9554-7

    Article  MathSciNet  MATH  Google Scholar 

  46. Landau, L.D., Lifshitz, E.M.: Chapter XV - Relativistic fluid dynamics. In: L.D. Landau, E.M. Lifshitz (eds.) Fluid Mechanics, 2nd edn, pp. 505–514. Pergamon (1987). https://doi.org/10.1016/b978-0-08-033933-7.50023-4

  47. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/cbo9780511791253

    Book  MATH  Google Scholar 

  48. Liu, Y., Shu, C.W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2018). https://doi.org/10.1016/j.jcp.2017.10.043

    Article  MathSciNet  MATH  Google Scholar 

  49. Martí, J.M., Müller, E.: Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys. 123(1), 1–14 (1996). https://doi.org/10.1006/JCPH.1996.0001

    Article  MathSciNet  MATH  Google Scholar 

  50. Martí, J.M., Müller, E.: Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics. Living Rev. Comput. Astrophys. 1(1), 1–182 (2015). https://doi.org/10.1007/LRCA-2015-3

    Article  Google Scholar 

  51. Mattia, G., Mignone, A.: A comparison of approximate non-linear Riemann solvers for relativistic MHD. Mon. Not. R. Astron. Soc. 510(1), 481–499 (2021). https://doi.org/10.1093/mnras/stab3373

    Article  Google Scholar 

  52. Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows—II Magnetohydrodynamics. Mon. Not. R. Astron. Soc. 368(3), 1040–1054 (2006). https://doi.org/10.1111/j.1365-2966.2006.10162.x

    Article  Google Scholar 

  53. Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. Suppl. Ser. 160(1), 199–219 (2005). https://doi.org/10.1086/430905/FULLTEXT/

    Article  Google Scholar 

  54. Mochkovitch, R., Maitia, V., Marques, R.: Internal shocks in a relativistic wind as a source for gamma-ray bursts? Astrophys. Sp. Sci. 231(1–2), 441–444 (1995). https://doi.org/10.1007/BF00658666

    Article  Google Scholar 

  55. Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161(2), 484–511 (2000). https://doi.org/10.1006/jcph.2000.6507

    Article  MathSciNet  MATH  Google Scholar 

  56. Orszag, S.A., Tang, C.M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(1), 129–143 (1979). https://doi.org/10.1017/S002211207900210X

    Article  Google Scholar 

  57. Qin, T., Shu, C.W., Yang, Y.: Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics. J. Comput. Phys. 315, 323–347 (2016). https://doi.org/10.1016/j.jcp.2016.02.079

    Article  MathSciNet  MATH  Google Scholar 

  58. Ryu, D., Chattopadhyay, I., Choi, E.: Equation of state in numerical relativistic hydrodynamics. Astrophys. J. Suppl. Ser. 166(1), 410–420 (2006). https://doi.org/10.1086/505937

    Article  Google Scholar 

  59. Schneider, V., Katscher, U., Rischke, D.H., Waldhauser, B., Maruhn, J.A., Munz, C.D.: New algorithms for ultra-relativistic numerical hydrodynamics. J. Comput. Phys. 105(1), 92–107 (1993). https://doi.org/10.1006/jcph.1993.1056

    Article  MathSciNet  MATH  Google Scholar 

  60. Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018). https://doi.org/10.1007/s10915-017-0579-4

    Article  MathSciNet  MATH  Google Scholar 

  61. Shumlak, U., Loverich, J.: Approximate Riemann solver for the two-fluid plasma model. J. Comput. Phys. 187(2), 620–638 (2003). https://doi.org/10.1016/S0021-9991(03)00151-7

    Article  MATH  Google Scholar 

  62. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91 (1987). https://doi.org/10.2307/2008251

    Article  MathSciNet  MATH  Google Scholar 

  64. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  65. van Putten, M.H.P.M.: Knots in simulations of magnetized relativistic jets. Astrophys. J. 467(2), L57–L60 (1996). https://doi.org/10.1086/310196

    Article  Google Scholar 

  66. Wardle, J.F., Homan, D.C., Ojha, R., Roberts, D.H.: Electron-positron jets associated with the quasar 3C279. Nature 395(6701), 457–461 (1998). https://doi.org/10.1038/26675

    Article  Google Scholar 

  67. Wilson, J.R., Mathews, G.J.: Special relativistic hydrodynamics. In: Relativistic Numerical Hydrodynamics, pp. 23–74. Cambridge University Press (2010). https://doi.org/10.1017/cbo9780511615917.003

  68. Wu, K., Shu, C.W.: Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations. SIAM J. Sci. Comput. 42(4), A2230–A2261 (2020). https://doi.org/10.1137/19M1275590

    Article  MathSciNet  MATH  Google Scholar 

  69. Wu, K., Shu, C.W.: Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. Numer. Math. 148(3), 699–741 (2021). https://doi.org/10.1007/s00211-021-01209-4

    Article  MathSciNet  MATH  Google Scholar 

  70. Wu, K., Tang, H.: Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state. Astrophys. J. Suppl. Ser. 228(1), 3 (2016). https://doi.org/10.3847/1538-4365/228/1/3

    Article  MathSciNet  Google Scholar 

  71. York, J.W. Jr: In: L.L. Smarr (eds.) Sources of Gravitational Radiation, p. 83. Cambridge University Press, New York (1979)

  72. Zenitani, S., Hesse, M., Klimas, A.: Relativistic two-fluid simulations of guide field magnetic reconnection. Astrophys. J. 705(1), 907–913 (2009). https://doi.org/10.1088/0004-637X/705/1/907

    Article  Google Scholar 

  73. Zenitani, S., Hesse, M., Klimas, A.: Two-fluid magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. 696(2), 1385–1401 (2009). https://doi.org/10.1088/0004-637X/696/2/1385

    Article  Google Scholar 

  74. Zhang, W., MacFadyen, A.I.: RAM: a relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164(1), 255–279 (2006). https://doi.org/10.1086/500792/FULLTEXT/

    Article  Google Scholar 

Download references

Acknowledgements

The work of Praveen Chandrashekar is supported by the Department of Atomic Energy, Government of India, under Project No. 12-R &D-TFR-5.01-0520. The work of Harish Kumar is supported in parts by DST-SERB, MATRICS Grant with file No. MTR/2019/000380 and VAJRA Grant with file No. VJR-2018-000129

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Bhoriya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Computation of Primitive Variables from the Conservative Variables

The evolutionary equations for the two-fluid relativistic plasma system (1) relies on the conserved quantities, \(D_\alpha \), \({\varvec{M}}_\alpha \) and \({\mathcal {E}}_\alpha \) and primitive quantities, \(\rho _\alpha \), \({\varvec{v}}_\alpha \) and \(p_\alpha \). We use the numerical procedure given in [11, 59] for the extraction of primitive variables from the conservative variables. As the procedure for obtaining primitives for the ions and electron fluid quantities is identical, we only focus on the ion-variables. Accordingly, for simplicity, we suppress the subscript \(\alpha \). For the ideal equation of state (2), we obtain the following quartic polynomial for the velocity variable \(v=|{\varvec{v}}|\) with real coefficients which only depend on the conservative variables.

$$\begin{aligned} {v}^4 + c_3 {v}^3 + c_2 {v}^2 + c_1 {v} + c_0=0, \end{aligned}$$
(45)

where

$$\begin{aligned} c_3 = -\frac{2 \gamma (\gamma - 1) M {\mathcal {E}}}{(\gamma - 1)^2({M}^2 + D^2)},\;\; c_2= \frac{(\gamma ^2 {\mathcal {E}}^2 + 2(\gamma - 1){M}^2 - (\gamma - 1)^2 D^2)}{(\gamma - 1)^2({M}^2 + D^2)}, \\ c_1=\frac{-2 \gamma {M} {\mathcal {E}}}{(\gamma - 1)^2({M}^2 + D^2)},\;\; c_0 = \frac{{M}^2}{(\gamma - 1)^2({M}^2 + D^2)}, \end{aligned}$$

with \(M=(M_x^2+M_y^2+M_z^2)^{1/2}\). The quartic polynomial (45) is solved using the Newton’s root solver with the number of iterations fixed to ten. We use the following initial guess \(v_0\) to initialize the root solver,

$$\begin{aligned} v_0=\frac{1}{2}(v_{lb}+v_{ub})+z, \end{aligned}$$

where

$$\begin{aligned} v_{lb}&=\frac{1}{2M(\gamma - 1)}(\gamma {\mathcal {E}} - \sqrt{\gamma ^2 {\mathcal {E}}^2 - 4(\gamma - 1)M^2} ), \\ v_{ub}&=\min {\left( 1, \frac{M}{{\mathcal {E}}}+ \delta \right) }, \\ z&= {\left\{ \begin{array}{ll} \dfrac{1}{2}\left( 1-\dfrac{D}{{\mathcal {E}}}\right) (u_{lb}-u_{ub}) &{} \text { if } u_{lb}>10^{-9} \\ 0 &{} \text { otherwise} \end{array}\right. }. \end{aligned}$$

After obtaining the velocity norm, v, we can extract the primitive variables using the following expressions.

$$\begin{aligned}{} & {} \rho = \frac{D}{\Gamma }, \\{} & {} v_x=\frac{M_x}{M} v, \ \ \ v_y=\frac{M_y}{M} v, \ \ \ v_z=\frac{M_z}{M} v, \\{} & {} p=(\gamma -1)({\mathcal {E}}- M_x v_x- M_y v_y -M_z v_z -\rho ). \end{aligned}$$

B Right Eigenvectors for the Two-Dimensional Two-Fluid Relativistic Plasma System

In this appendix, we provide expressions of the right eigenvectors for the two-dimensional relativistic plasma system (4). The set of right eigenvectors of the matrix \({\textbf{A}}^x\) corresponding to the eigenvalues \(\mathbf {\Lambda }^x\) of the system (4) is obtained by setting \(d=x\) in the ordered set \( {\textbf{R}}^d_{\Lambda ^d} = \left\{ \left( {\textbf{R}}_{\Lambda ^d}^d \right) _n: \ n = 1, \ 2,\ 3,\dots , 18 \right\} \). For \(n=1,2,3,\dots ,18,\) the vectors \(\left( {\textbf{R}}_{\Lambda ^d}^d\right) _n\) are given by

$$\begin{aligned} \left( {\textbf{R}}_{\Lambda ^d}^d\right) _n = {\left\{ \begin{array}{ll} \Big (({\textbf{R}}_{i,k}^{d})_{1 \times 5}, {\textbf{0}}_{1 \times 5}, {\textbf{0}}_{1 \times 8}\Big )^\top , &{} 1 \le n \le 5, \ k = n \\ \Big ({\textbf{0}}_{1 \times 5}, ({\textbf{R}}_{e,k}^{d})_{1 \times 5}, {\textbf{0}}_{1 \times 8}\Big )^\top , &{} 6 \le n \le 10, \ k = n-5 \\ \Big ({\textbf{0}}_{1 \times 5}, {\textbf{0}}_{1 \times 5}, ({\textbf{R}}_{m,k}^{d})_{1 \times 8}\Big )^\top , &{} 11 \le n \le 18, \ k = n-10, \end{array}\right. } \end{aligned}$$
(46)

where \({\textbf{R}}^{d}_{\alpha ,k}\), \(\alpha \in \{i,e\}\), is the \(k^{th}\) column vector of the \(5 \times 5\) right eigenvector matrices \({\textbf{R}}^d_\alpha \) of the flux jacobians \(\dfrac{\partial {\textbf{f}}^d_\alpha }{\partial {\textbf{U}}_\alpha }\), and \({\textbf{R}}^{d}_{m,k}\) is the \(k^{th}\) column vector of the right eigenvector matrix \({\textbf{R}}^d_m\) of the flux jacobian matrix \(\dfrac{\partial {\textbf{f}}^d_m}{\partial {\textbf{U}}_m}\). The matrices \({\textbf{R}}^{k}_{\alpha }\) and \({\textbf{R}}^{k}_{m}\) has the following expressions.

  • For \(d =x,y\), \(\alpha \in \{i,e\}\), the right eigenvector matrix \({\textbf{R}}^d_\alpha \) is given by the equation

    $$\begin{aligned} {\textbf{R}}_{\alpha }^{d}= \left( \dfrac{\partial {\textbf{U}}_\alpha }{\partial {\textbf{W}}_\alpha } \right) {\textbf{R}}_{\alpha ,{\textbf{W}}}^d \end{aligned}$$

    where \({\textbf{R}}_{\alpha ,{\textbf{W}}}^d\) is the matrix of right eigenvectors of system (4) written in primitive form. For \(d=x\), the matrix \({\textbf{R}}_{\alpha ,{\textbf{W}}}^d\) has the expression

    $$\begin{aligned} {\textbf{R}}_{\alpha ,{\textbf{W}}}^x = \begin{pmatrix} \frac{1}{c_\alpha ^2 h_\alpha } &{} 1 &{} 0 &{} 0 &{} \frac{1}{c_\alpha ^2 h_\alpha } \\ \frac{-\sqrt{Q^x_\alpha }}{c_\alpha h_\alpha \Gamma _\alpha \rho _\alpha } &{} 0 &{} 0 &{} 0 &{} \frac{+\sqrt{Q^x_\alpha }}{c_\alpha h_\alpha \Gamma _\alpha \rho _\alpha } \\ \frac{\left( c_\alpha -\Gamma _\alpha \sqrt{Q^x_\alpha } {v_{x_\alpha }}\right) {v_{y_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{x_\alpha }^2-1\right) } &{} 0 &{} 1 &{} 0 &{} \frac{\left( c_\alpha +\Gamma _\alpha \sqrt{Q^x_\alpha } {v_{x_\alpha }}\right) {v_{y_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( u_{x_\alpha }^2-1\right) } \\ \frac{\left( c_\alpha -\Gamma _\alpha \sqrt{Q^x_\alpha } {v_{x_\alpha }}\right) {v_{z_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{x_\alpha }^2-1\right) } &{} 0 &{} 1 &{} 0 &{} \frac{\left( c_\alpha +\Gamma _\alpha \sqrt{Q^x_\alpha } {v_{x_\alpha }}\right) {v_{z_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{x_\alpha }^2-1\right) } \\ 1 &{} 0 &{} 0 &{} 0 &{} 1 \end{pmatrix}. \end{aligned}$$
  • The eigenvector matrix \({\textbf{R}}^{d}_{m}\) for \(d=y\) is given by

    $$\begin{aligned} {\textbf{R}}_{m}^{x}= \begin{pmatrix} 0 &{}-1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{}-1 &{} 0 &{} 0 \\ 0 &{} 0 &{}-1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \end{pmatrix}. \end{aligned}$$

Remark 4

For the \(y-\)directional flux, \({\textbf{f}}^y\), we proceed similarly to obtain the set of eigenvalues \(\mathbf {\Lambda }^y\) of the jacobian matrix \(\dfrac{\partial {\textbf{f}}^y}{\partial {\textbf{U}}}\) as

$$\begin{aligned} \mathbf {\Lambda }^y = \biggl \{&\frac{(1-c_i^2)v_{y_i}-(c_i/\Gamma _i) \sqrt{Q_i^y}}{1-c_i^2 |{\varvec{v}}|_i^2},\ v_{y_i}, \ v_{y_i}, \ v_{y_i}, \frac{(1-c_i^2)v_{y_i}+(c_i/\Gamma _i) \sqrt{Q_i^y}}{1-c_i^2 |{\varvec{v}}|_i^2}, \\&\frac{(1-c_e^2)v_{y_e}-(c_e/\Gamma _e) \sqrt{Q_e^y}}{1-c_e^2 |{\varvec{v}}|_e^2},\ v_{y_e}, \ v_{y_e}, \ v_{y_e}, \frac{(1-c_e^2)v_{y_e}+(c_e/\Gamma _e) \sqrt{Q_e^y}}{1-c_e^2 |{\varvec{v}}|_e^2}, \\&-\chi , \ -\kappa , \ -1, \ -1, \ 1, \ 1, \ \kappa , \ \chi \biggr \}, \end{aligned}$$

where, \( Q_\alpha ^y=1-u_{y_\alpha }^2-c_\alpha ^2 (u_{x_\alpha }^2+u_{z_\alpha }^2), \ \alpha \in \{ i, \ e \} \). The corresponding right eigenvectors can be obtained by taking \(d=y\) in the ordered set \({\textbf{R}}^d_{\Lambda ^d} = \left\{ \left( {\textbf{R}}_{\Lambda ^d}^d\right) _n: \ n = 1, \ 2,\ 3,\dots , \ 18\right\} \) where \(\left( {\textbf{R}}_{\Lambda ^d}^d\right) _n\) is defined by Eq. (46) and the updated \(y-\)directional matrices \({\textbf{R}}_{\alpha ,{\textbf{W}}}^y\) and \({\textbf{R}}^{y}_{m}\) are given by

$$\begin{aligned} {\textbf{R}}_{\alpha ,{\textbf{W}}}^y = \begin{pmatrix} \frac{1}{c_\alpha ^2 h_\alpha } &{} 1 &{} 0 &{} 0 &{} \frac{1}{c_\alpha ^2 h_\alpha } \\ \frac{\left( c_\alpha -\Gamma _\alpha \sqrt{Q^y_\alpha } {v_{y_\alpha }}\right) {v_{x_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{y_\alpha }^2-1\right) } &{} 0 &{} 1 &{} 0 &{} \frac{\left( c_\alpha +\Gamma _\alpha \sqrt{Q^y_\alpha } {v_{y_\alpha }}\right) {v_{x_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{y_\alpha }^2-1\right) } \\ \frac{-\sqrt{Q^y_\alpha }}{c_\alpha h_\alpha \Gamma _\alpha \rho _\alpha } &{} 0 &{} 0 &{} 0 &{} \frac{+\sqrt{Q^y_\alpha }}{c_\alpha h_\alpha \Gamma _\alpha \rho _\alpha } \\ \frac{\left( c_\alpha -\Gamma _\alpha \sqrt{Q^y_\alpha } {v_{y_\alpha }}\right) {v_{z_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{y_\alpha }^2-1\right) } &{} 0 &{} 0 &{} 1 &{} \frac{\left( c_\alpha +\Gamma _\alpha \sqrt{Q^y_\alpha } {v_{y_\alpha }}\right) {v_{z_\alpha }}}{c_\alpha h_\alpha \Gamma ^2_\alpha \rho _\alpha \left( v_{y_\alpha }^2-1\right) } \\ 1 &{} 0 &{} 0 &{} 0 &{} 1 \end{pmatrix}, \\ {\textbf{R}}_{m}^{y}= \begin{pmatrix} 0 &{} 0 &{} 0 &{}-1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{}-1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{}-1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \end{pmatrix} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoriya, D., Biswas, B., Kumar, H. et al. Entropy Stable Discontinuous Galerkin Schemes for Two-Fluid Relativistic Plasma Flow Equations. J Sci Comput 97, 72 (2023). https://doi.org/10.1007/s10915-023-02387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02387-z

Keywords

Mathematics Subject Classification

Navigation