Skip to main content
Log in

Entropy-stable schemes for relativistic hydrodynamics equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we propose high-order finite difference schemes for the equations of relativistic hydrodynamics, which are entropy stable. The crucial components of these schemes are a computationally efficient entropy conservative flux and suitable high-order entropy dissipative operators. We first design a higher-order entropy conservative flux. For the construction of appropriate entropy dissipative operators, we derive entropy scaled right eigenvectors. This is then used with ENO-based sign-preserving reconstruction of scaled entropy variables, which results in higher-order entropy-stable schemes. Several numerical results are presented up to fourth order to demonstrate entropy stability and performance of these schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dovers Publications, Inc., New York (1972)

    MATH  Google Scholar 

  2. Aloy, M.A., Ibáñez, J.M., Martí, J.M., Müller, E.: GENESIS: a high-resolution code for three-dimensional relativistic hydrodynamics. Astrophys. J. Suppl. Ser. 122(1), 151–166 (1999)

    Google Scholar 

  3. Anile, A.M.: Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  4. Barth, T.J.: Numerical methods for gas-dynamics systems on unstructured meshes. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics of Conservation Laws. Lecture Notes in Computational Science, vol. 5, pp. 195–285. Springer, Berlin (1999)

    Google Scholar 

  5. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984)

    Google Scholar 

  6. Boettcher, M., Harris, D.E., Krawczynski, H.: Relativistic Jets from Active Galactic Nuclei. Wiley, Hoboken (2012)

    Google Scholar 

  7. Centrella, J., Wilson, J.R.: Planar numerical cosmology. II. The difference equations and numerical tests. Astrophys. J. Suppl. Ser. 54(2), 229–249 (1984)

    Google Scholar 

  8. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Chiodaroli, E., Lellis, C.D., Kreml, O.: Global Ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Choi, E., Ryu, D.: Numerical relativistic hydrodynamics based on the total variation diminishing scheme. New Astron. 11(2), 116–129 (2005)

    Google Scholar 

  11. Falle, S.A.E.G., Komissarov, S.S.: An upwind numerical scheme for relativistic hydrodynamics with a general equation of state. Mon. Not. R. Astron. Soc. 278(2), 586–602 (1996)

    Google Scholar 

  12. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Font, J.A.: Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11(1), 7 (2008)

    MATH  Google Scholar 

  15. Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)

    MATH  Google Scholar 

  16. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ismail, F., Roe, P.L.: Affordable, entropy-consistent euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Landau, L.D., Lifschitz, E.M.: Fluid Mechanics. CHapter XV - Relativistic Fluid Dynamics, 2nd edn. Pergamon, New York (1987)

    Google Scholar 

  21. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Martí, J.M., Müller, E.: Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys. 123(1), 1–14 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Martí, M.J., Müller, E.: Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics. Living Rev. Comput. Astrophy. 1(1), 3 (2015)

    Google Scholar 

  24. Martí, M.J., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6(1), 7 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows I. Hydrodynamics. Mon. Not. R. Astron. Soc. 364(1), 126–136 (2005)

    Google Scholar 

  26. Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. Suppl. Ser. 160(1), 199–219 (2005)

    Google Scholar 

  27. Mirabel, I.F., Rodríguez, L.F.: Sources of relativistic jets in the galaxy. Ann. Rev. Astron. Astrophys. 37, 409–443 (1999)

    Google Scholar 

  28. Rosa, J.N.D.L., Munz, C.-D.: XTROEM-FV: a new code for computational astrophysics based on very high order finite-volume methods-II. Relativistic hydro- and magnetohydrodynamics. Mon. Not. R. Astron. Soc. 460(1), 535–559 (2016)

    Google Scholar 

  29. Ryu, D., Chattopadhyay, I., Choi, E.: Equation of state in numerical relativistic hydrodynamics. Astrophys. J. Suppl. Ser. 166(1), 410–420 (2006)

    Google Scholar 

  30. Schneider, V., Katscher, U., Rischke, D.H., Waldhauser, B., Maruhn, J.A., Munz, C.-D.: New algorithms for ultra-relativistic numerical hydrodynamics. J. Comput. Phys. 105(1), 92–107 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Sweby, P.K.: High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Synge, J.L.: Relativity: The Special Theory. North-Holland Pub. Co., Amsterdam (1956)

    MATH  Google Scholar 

  34. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Wilson, J.R.: A numerical method for relativistic hydrodynamics. In: Smarr, L.L. (ed.) Sources of Gravitational Radiation. Proceedings of the Battelle Seattle Workshop, July 24–August 4, 1978, pp. 423–445. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  36. Wu, K., Tang, H.Z.: High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539–564 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Wu, K., Tang, H.Z.: Physical-constraints-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state. Astrophys. J. Suppl. Ser. 228(3), 23 (2016)

    Google Scholar 

  38. Zanna, L.D., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows I. Hydrodynamics. Ann. Rev. Astron. Astrophys. 390(3), 1177–1186 (2002)

    MATH  Google Scholar 

  39. Zensus, J.A.: Parsec-scale jets in extragalactic radio sources. Ann. Rev. Astron. Astrophys. 35(1), 607–636 (1997)

    Google Scholar 

  40. Zhang, W., MacFadyen, A.I.: RAM: a relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164(1), 255–279 (2006)

    Google Scholar 

Download references

Acknowledgements

We want to thank Prof. Praveen Chandrashekar (TIFR-CAM, Bengaluru, India) and Prof. Dinshaw Balsara (Notre-Dame University, IN, USA) for several useful discussions. We also want to thank Prof. José María Martí (Universidad de Valencia, Spain) for providing us the codes for the exact solutions of the Riemann problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Computation of primitive variables

The RHD equations involve the conserved quantities, D, \(\varvec{m}\) and E; but to solve the RHD equations numerically, we need to know the explicit values of the primitive variables, \(\rho \), \(\mathbf{u}\) and p. The primitive variables can be extracted by inverting the RHD equations (1). For the ideal equation of state (4), [30] showed that (using Eq. (1)) the variable \({u} (=|\mathbf{u}|)\) satisfies

$$\begin{aligned} {u}^4 + a_3 {u}^3 + a_2 {u}^2 + a_1 {u} + a_0=0, \end{aligned}$$
(25)

where

$$\begin{aligned} a_3= & {} -\frac{2 \gamma (\gamma - 1) ME}{(\gamma - 1)^2({M}^2 + D^2)},\;\; a_2= \frac{(\gamma ^2 E^2 + 2(\gamma - 1){M}^2 - (\gamma - 1)^2 D^2)}{(\gamma - 1)^2({M}^2 + D^2)},\\ a_1= & {} \frac{-2 \gamma {M} E}{(\gamma - 1)^2({M}^2 + D^2)},\;\; a_0 = \frac{{M}^2}{(\gamma - 1)^2({M}^2 + D^2)}, \end{aligned}$$

with \(M=(m_x^2+m_y^2+m_z^2)^{1/2}\). Equation (25) could either be solved using the analytical methods or using an approximate root solver. In [30], authors have suggested the following expressions for the lower bound \(u_{\mathrm{lb}}\) and upper bound \(u_{\mathrm{ub}}\):

$$\begin{aligned} u_{\mathrm{lb}}=\frac{1}{2M(\gamma - 1)}(\gamma E - \sqrt{\gamma ^2 E^2 - 4(\gamma - 1)M^2} ) \end{aligned}$$

and

$$\begin{aligned} u_{\mathrm{ub}}=\min {\left( 1, \frac{M}{E}+ \delta \right) }, \end{aligned}$$

where \(\delta \approx 10^{-6}\). Furthermore, to find the root of Eq. (25) using the Newton–Raphson method, [30] suggested the initial guess \(u_o\) as,

$$\begin{aligned} u_o=\frac{1}{2}(u_{\mathrm{lb}}+u_{\mathrm{ub}})+z, \end{aligned}$$

where \(z=\frac{1}{2}\left( 1-\frac{D}{E}\right) (u_{\mathrm{lb}}-u_{\mathrm{ub}})\) if \(u_{\mathrm{lb}}>10^{-9}\) and \(z=0\) otherwise. We then obtain \(u_o\) between \(u_{\mathrm{lb}}\) and \(u_{\mathrm{ub}}\). Also, an accuracy of nine digits can be achieved in at most five iterations of the Newton–Raphson root solver.

For the analytic solution, we can use the direct formulation of the roots of the quartic equations. The general form of analytical roots is available in [1]. We note that Eq. (25) has two complex roots and two real roots. Among two real roots, only one root lies between the lower and upper bounds suggested by [30], which is given by,

$$\begin{aligned} u = \frac{-B + \sqrt{B^2-4 C}}{2}, \end{aligned}$$

where,

$$\begin{aligned} \begin{aligned} B&=\frac{a_3}{2}+\sqrt{\frac{a_3^2}{4}+z_1-a_2}, \ C=\frac{z_1}{2}-\sqrt{\left( \frac{z_1}{2}\right) ^2-a_0}, \ z_1=(s_1+s_2)-\frac{b_{2}}{3}, \ s_1={(r+\sqrt{q^3+r^2})}^{1/3},\\ s_2&={(r-\sqrt{q^3+r^2})}^{1/3}, \ q=\frac{b_1}{3}-\frac{b_2^2}{9}, \ r=\frac{1}{6}(b_1 b_2-3 b_0)-\frac{1}{27} b_2^3,\ b_0=-(a_1^2+a_0 a_3^2-4 a_0 a_2), \\ b_1&=a_1 a_3-4 a_0 \ \text {and } b_2=-a_2. \end{aligned} \end{aligned}$$

Once we have the value of u, we can find all the primitive variables, i.e. \(\rho ,\ u_i, \ p,\) using the expressions

$$\begin{aligned} \rho= & {} \frac{D}{\Gamma }, \\ u_x= & {} \frac{m_x}{M} u, \ \ \ u_y=\frac{m_y}{M} u, \ \ \ u_z=\frac{m_z}{M} u, \\ p= & {} (\gamma -1)(E- m_x u_x- m_y u_y -m_z u_z -\rho ). \end{aligned}$$

In this article, we use numerical approach to find the primitive variables from the conservative variables.

Entropy scaled right eigenvectors

In this section, we present the entropy scaled right eigenvectors. First, we consider the case of x-direction right eigenvectors. We rewrite the RHD system (3),

$$\begin{aligned} \frac{\partial \mathbf {U}}{\partial t}+ \mathbf {A}^x\frac{\partial \mathbf {U}}{\partial x } = 0, \text { where }\ \mathbf {A}^x=\frac{\partial \mathbf {f}^x}{\partial \mathbf {U}}. \end{aligned}$$

Following [29], the eigenvalues of the Jacobian matrix \(\mathbf {A}^x\) are given by:

$$\begin{aligned} \lambda _1^x =\frac{(1-c^2)u_x-(c/\Gamma ) \sqrt{Q^x}}{1-c^2 \varvec{u}^2}, \ \ \lambda _2^x= \lambda _3^x =u_x \ \text {and} \ \ \lambda _4^x = \ \frac{(1-c^2)u_x+(c/\Gamma ) \sqrt{Q^x}}{1-c^2 \varvec{u}^2}. \end{aligned}$$

Here, \(Q^x=1-u_x^2-c^2 u_y^2\) and c is the sound speed given by the expression

$$\begin{aligned} c^2=-\frac{\rho }{n h} \frac{\partial h}{\partial \rho }, \end{aligned}$$

where \(n=k-1\) with \(k = \frac{\gamma }{\gamma -1}\), for all \(\mathbf {U} \in \Omega \). Note that \(Q^x=1-u_x^2-c^2 u_y^2 > 0\); therefore, all the eigenvalues are real. A straightforward calculation results in the following expressions for the eigenvectors in primitive variables:

The eigenvector matrix for the conservative system, \(\tilde{\mathbf {R}}^x\), can be derived using,

$$\begin{aligned} \tilde{\mathbf {R}}^{x}=\frac{\partial \mathbf {U}}{\partial \mathbf {w}} \tilde{\mathbf {R}}_w^{x}, \end{aligned}$$
(26)

where \(\tilde{\mathbf {R}}_w^{x} =(e_1, \ e_2, \ e_3,\ e_4)\), i.e. the matrix of right eigenvectors for the primitive system. To obtain the scaled right eigenvector matrix \({{\mathbf {R}}}^x\), we need to find a scaling matrix \(\mathbf {T}^x\) such that the scaled right eigenvector matrix, \({{\mathbf {R}}}^x= \tilde{\mathbf {R}}^x \mathbf {T}^x\), satisfies

$$\begin{aligned} \frac{\partial \mathbf {U}}{\partial \mathbf {v}} ={{\mathbf {R}}^x} {{}{{\mathbf {R}}^x}}^\top . \end{aligned}$$
(27)

We first derive the expression of the entropy scaled right eigenvector for the primitive variable system, \({\mathbf {R}}^x_w\). Following the procedure of [4, 31], the scaling matrix \(\mathbf {T}^x\) is the square root of the matrix \(\mathbf {Y}^x\), where

$$\begin{aligned} \mathbf {Y}^x= {{}\tilde{\mathbf {R}}^x_w}^{-1} \frac{\partial \mathbf {w}}{\partial \mathbf{v} } \frac{\partial \mathbf {U}}{\partial \mathbf {w}}^{- \top } {{}\tilde{\mathbf {R}}^x_w}^{- \top }, \end{aligned}$$

which on a long calculation results in,

$$\begin{aligned} \mathbf {Y}^x= \begin{pmatrix} \frac{c^2 h p \left( 1+\frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) } &{} 0 &{} 0 &{} 0\\ 0 &{} \frac{\rho }{k \Gamma } &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{p}{h \Gamma ^5 \rho ^2 \left( 1-{u_x}^2\right) } &{} 0 \\ 0 &{} 0 &{} 0 &{} \frac{c^2 h p \left( 1- \frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) } \end{pmatrix}. \end{aligned}$$

Consequently,

$$\begin{aligned} \mathbf {T}^x=\sqrt{ \mathbf {Y}^x}= \begin{pmatrix} \sqrt{ \frac{c^2 h p \left( 1+\frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }} &{} 0 &{} 0 &{} 0 \\ 0 &{} \sqrt{\frac{\rho }{k \Gamma }} &{} 0 &{} 0 \\ 0 &{} 0 &{} \sqrt{ \frac{p}{h \Gamma ^5 \rho ^2 \left( 1-{u_x}^2\right) }} &{} 0 \\ 0 &{} 0 &{} 0 &{} \sqrt{ \frac{c^2 h p \left( 1- \frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }} \end{pmatrix}. \end{aligned}$$

So, the entropy scaled right eigenvector matrix for the primitive system is given by

$$\begin{aligned} {{\mathbf {{R}}}^x_w}&= {\tilde{\mathbf {{R}}}^x_w} \mathbf {T}^x\\&= \begin{pmatrix} \frac{A^x_1}{c^2 h} &{} A^x_2 &{} 0 &{} \frac{A^x_4}{c^2 h} \\ \frac{-A^x_1\sqrt{Q^x}}{c h \Gamma \rho } &{} 0 &{} 0 &{} \frac{A^x_4 \sqrt{Q^x}}{c h \Gamma \rho } \\ \frac{A^x_1\left( c-\Gamma \sqrt{Q^x} {u_x}\right) {u_y}}{c h \Gamma ^2 \rho \left( {u_x}^2-1\right) } &{} 0 &{} A^x_3 &{} \frac{A^x_4\left( c+\Gamma \sqrt{Q^x} {u_x}\right) {u_y}}{c h \Gamma ^2 \rho \left( {u_x}^2-1 \right) } \\ A^x_1 &{} 0 &{} 0 &{} A^x_4 \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} A^x_1=\sqrt{ \frac{c^2 h p \left( 1+\frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }}, \ A^x_2=\sqrt{\frac{\rho }{k \Gamma }}, \ A^x_3=\sqrt{ \frac{p}{h \Gamma ^5 \rho ^2 \left( 1-{u_x}^2\right) }} \text { and } A^x_4=\sqrt{ \frac{c^2 h p \left( 1- \frac{c {u_x}}{\Gamma \sqrt{Q^x}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }}. \end{aligned}$$

Using Eq. (26), we can calculate the entropy scaled right eigenvectors for the conservative system satisfying (27).

Remark B.1

Proceeding similarly in the y-direction, we get the eigenvalues of the Jacobian matrix as

$$\begin{aligned} \lambda _1^y =\frac{(1-c^2)u_y-(c/\Gamma ) \sqrt{Q^y}}{1-c^2 \varvec{u}^2}, \ \ \lambda _2^y =u_y, \ \ \lambda _3^y =u_y \ \text {and} \ \ \lambda _4^y = \frac{(1-c^2)u_y+(c/\Gamma ) \sqrt{Q^y}}{1-c^2 \varvec{u}^2}, \end{aligned}$$

and the right eigenvector matrix, for the system in primitive variables, as

$$\begin{aligned} \tilde{\mathbf {R}}_w^y =\left( \begin{array}{cccc} \frac{1}{c^2 h} &{} 1 &{} 0 &{} \frac{1}{c^2 h}\\ \frac{\left( c-\Gamma \sqrt{Q^y} {u_y}\right) {u_x}}{c h \Gamma ^2 \rho \left( {u_y}^2-1\right) } &{} 0 &{} 1 &{} \frac{\left( c+\Gamma \sqrt{Q^y} {u_y}\right) {u_x}}{c h \Gamma ^2 \rho \left( {u_y}^2-1 \right) }\\ \frac{-\sqrt{Q^y}}{c h \Gamma \rho } &{} 0 &{} 0 &{} \frac{\sqrt{Q^y}}{c h \Gamma \rho }\\ 1 &{} 0 &{} 0 &{} 1 \end{array} \right) \end{aligned}$$

where \(Q^y=1-u_y^2-c^2 u_x^2\). Consequently, the entropy scaled right eigenvector matrix is given by

$$\begin{aligned} {\mathbf {R}}_w^y = \begin{pmatrix} \frac{A^y_1}{c^2 h} &{} A^y_2 &{} 0 &{} \frac{A^y_4}{c^2 h}\\ \frac{A^y_1\left( c-\Gamma \sqrt{Q^y} {u_y}\right) {u_x}}{c h \Gamma ^2 \rho \left( {u_y}^2-1\right) } &{} 0 &{} A^y_3 &{} \frac{A^y_4\left( c+\Gamma \sqrt{Q^y} {u_y}\right) {u_x}}{c h \Gamma ^2 \rho \left( {u_y}^2-1 \right) }\\ \frac{-A^y_1\sqrt{Q^y}}{c h \Gamma \rho } &{} 0 &{} 0 &{} \frac{A^y_4 \sqrt{Q^y}}{c h \Gamma \rho }\\ A^y_1 &{} 0 &{} 0 &{} A^y_4 \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} A^y_1=\sqrt{ \frac{c^2 h \frac{\rho }{\beta } \left( 1+\frac{c {u_y}}{\Gamma \sqrt{Q^y}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }}, \ A^y_2=\sqrt{\frac{\rho }{k \Gamma }}, \ A^y_3=\sqrt{ \frac{\rho }{\beta h \Gamma ^5 \rho ^2 \left( 1-{u_y}^2\right) }}, \ \text {and } A^y_4=\sqrt{ \frac{c^2 h \frac{\rho }{\beta } \left( 1- \frac{c {u_y}}{\Gamma \sqrt{Q^y}}\right) }{2 \Gamma \left( 1-c^2 \varvec{u}^2\right) }}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoriya, D., Kumar, H. Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys. 71, 29 (2020). https://doi.org/10.1007/s00033-020-1250-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1250-8

Keywords

Mathematics Subject Classification

Navigation