Skip to main content
Log in

A Flux Reconstruction Stochastic Galerkin Scheme for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The study of uncertainty propagation poses a great challenge to design high fidelity numerical methods. Based on the stochastic Galerkin formulation, this paper addresses the idea and implementation of the first flux reconstruction scheme for hyperbolic conservation laws with random inputs. High-order numerical approximation is adopted simultaneously in physical and random space, i.e., the modal representation of solutions is based on an orthogonal polynomial basis and the nodal representation is based on solution collocation points. Therefore, the numerical behaviors of the scheme in the (physical-random) phase space can be designed and understood uniformly. A family of filters is developed in multi-dimensional cases to mitigate the Gibbs phenomenon arising from discontinuities in both physical and random space. The filter function is switched on and off by the dynamic detection of discontinuous solutions, and a slope limiter is employed to preserve the positivity of physically realizable solutions. As a result, the proposed method is able to capture the stochastic flow evolution where resolved and unresolved regions coexist. Numerical experiments including a wave propagation, a Burgers’ shock, a one-dimensional Riemann problem, and a two-dimensional shock-vortex interaction problem are presented to validate the current scheme. The order of convergence of the high-order scheme is identified. The capability of the scheme for simulating smooth and discontinuous stochastic flow dynamics is demonstrated. The open-source codes to reproduce the numerical results are available under the MIT license (Xiao et al. in FRSG: stochastic Galerkin method with flux reconstruction. https://github.com/CSMMLab/FRSG, (2021). https://doi.org/10.5281/zenodo.5588317).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abgrall, R., Mishra, S.: Uncertainty quantification for hyperbolic systems of conservation laws. In: Handbook of Numerical Analysis, vol. 18, pp. 507–544. Elsevier (2017)

  2. Alldredge, G., Frank, M., Kusch, J., McClarren, R.: A realizable filtered intrusive polynomial moment method. arXiv preprint arXiv:2105.07473 (2021)

  3. Barth, T.J., Deconinck, H.: High-Order Methods for Computational Physics, vol. 9. Springer (2013)

  4. Buerger, R., Kroeker, I., Rohde, C.: A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit (2014)

  5. Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order runge-kutta discontinuous galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of grad’s moment system in one dimensional space. Commun. Math. Sci. 11(2), 547–571 (2013). https://doi.org/10.4310/CMS.2013.v11.n2.a12

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in sobolev spaces. Math. Comput. 38(157), 67–86 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Chertock, A., Jin, S., Kurganov, A.: An operator splitting based stochastic galerkin method for the one-dimensional compressible euler equations with uncertainty. Preprint pp. 1–21 (2015)

  9. Chertock, A., Jin, S., Kurganov, A.: A well-balanced operator splitting based stochastic galerkin method for the one-dimensional saint-venant system with uncertainty. Preprint (2015)

  10. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods: Theory, Computation and Application, vol. 11. Springer (2012)

  11. Cox, C., Trojak, W., Dzanic, T., Witherden, F., Jameson, A.: Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes. Comput. Fluids 221, 104922 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Dai, D., Epshteyn, Y., Narayan, A.: Hyperbolicity-preserving and well-balanced stochastic galerkin method for shallow water equations. SIAM J. Sci. Comput. 43(2), A929–A952 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Dai, D., Epshteyn, Y., Narayan, A.: Hyperbolicity-preserving and well-balanced stochastic galerkin method for two-dimensional shallow water equations. J. Comput. Phys. 452, 110901 (2022)

    MathSciNet  MATH  Google Scholar 

  14. De Grazia, D., Mengaldo, G., Moxey, D., Vincent, P., Sherwin, S.: Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. Int. J. Numer. Meth. Fluids 75(12), 860–877 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty quantification in computational fluid dynamics, pp. 105–149. Springer (2013)

  16. Di, Y., Fan, Y., Kou, Z., Li, R., Wang, Y.: Filtered hyperbolic moment method for the vlasov equation. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0882-8

    Article  MATH  Google Scholar 

  17. Donoghue, G., Yano, M.: Spatio-stochastic adaptive discontinuous galerkin methods. Comput. Methods Appl. Mech. Eng. 374, 113570 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., Schneider, F.: A hyperbolicity-preserving discontinuous stochastic galerkin scheme for uncertain hyperbolic systems of equations. J. Comput. Appl. Math. 370, 112602 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.D., Rohde, C.: A high-order stochastic galerkin code for the compressible euler and navier-stokes equations. Comput. Fluids 105039 (2021)

  20. Fan, Y., Koellermeier, J.: Accelerating the convergence of the moment method for the Boltzmann equation using filters. J. Sci. Comput. 84(1), 1–28 (2020). https://doi.org/10.1007/s10915-020-01251-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016). https://doi.org/10.1007/s10955-015-1384-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Gerster, S., Herty, M.: Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27(639–671), 1 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Gerster, S., Herty, M., Sikstel, A.: Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186–204 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer (2007)

  26. Hou, T.Y., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Hu, J., Jin, S., Shu, R.: On stochastic Galerkin approximation of the nonlinear Boltzmann equation with uncertainty in the fluid regime. J. Comput. Phys. 397, 108838 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4079 (2007)

  29. Jin, S., Xiu, D., Zhu, X.: Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings. J. Comput. Phys. 289, 35–52 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Knio, O.M., Najm, H.N., Ghanem, R.G., et al.: A stochastic projection method for fluid flow: I. Basic formulation. J. Comput. Phys. 173(2), 481–511 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comput. Phys. 28(3), 1038–1084 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Koellermeier, J., Schaerer, R.P., Torrilhon, M.: A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinet. Rel. Models 7(3), 531–549 (2014). https://doi.org/10.3934/krm.2014.7.531

    Article  MathSciNet  MATH  Google Scholar 

  33. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Kusch, J., Alldredge, G.W., Frank, M.: Maximum-principle-satisfying second-order intrusive polynomial moment scheme. SMAI J. Comput. Math. 5, 23–51 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Kusch, J., McClarren, R.G., Frank, M.: Filtered stochastic Galerkin methods for hyperbolic equations. J. Comput. Phys. 403, 109073 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Kusch, J., Schlachter, L.: Oscillation mitigation of hyperbolicity-preserving intrusive uncertainty quantification methods for systems of conservation laws. J. Comput. Appl. Math. 113714 (2021)

  37. Kusch, J., Wolters, J., Frank, M.: Intrusive acceleration strategies for uncertainty quantification for hyperbolic systems of conservation laws. J. Comput. Phys. 419, 109698 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Le Maıtre, O., Knio, O., Najm, H., Ghanem, R.: Uncertainty propagation using Wiener–Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216(2), 780–801 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Meyer, F., Rohde, C., Giesselmann, J.: A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method. IMA J. Numer. Anal. 40(2), 1094–1121 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for burgers’ equation using a polynomial chaos approach. ESAIM: Math. Model. Numer. Anal. 52(6), 2215–2245 (2018)

  42. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 112 (2006)

  43. Pettersson, P., Iaccarino, G., Nordström, J.: Numerical analysis of the Burgers’ equation in the presence of uncertainty. J. Comput. Phys. 228(22), 8394–8412 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic galerkin method for the euler equations with roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009). https://doi.org/10.1016/j.jcp.2008.12.018

    Article  MathSciNet  MATH  Google Scholar 

  46. Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Rajput, M.M.: Master thesis filtered stochastic Galerkin for radiative transfer and fluid dynamics. Master thesis, Karlsruhe Institute of Technology (2020)

  48. Schlachter, L., Schneider, F.: A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations. J. Comput. Phys. 375, 80–98 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Smith, R.C.: Uncertainty quantification: theory, implementation, and applications, vol. 12. SIAM (2013)

  50. Sousedík, B., Elman, H.C.: Stochastic Galerkin methods for the steady-state Navier–Stokes equations. J. Comput. Phys. 316, 435–452 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  52. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer (2013)

  53. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Tryoen, J., Le Maitre, O.L., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34(5), A2459–A2481 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Tsitouras, C.: Runge–Kutta pairs of order 5 (4) satisfying only the first column simplifying assumption. Comput. Math. Appl. 62(2), 770–775 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Vandenhoeck, R., Lani, A.: Implicit high-order flux reconstruction solver for high-speed compressible flows. Comput. Phys. Commun. 242, 1–24 (2019)

    MathSciNet  Google Scholar 

  57. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Wan, X., Karniadakis, G.E.: Multi-element generalized polynomial Chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., et al.: High-order cfd methods: current status and perspective. Int. J. Numer. Meth. Fluids 72(8), 811–845 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Xiao, T.: Kinetic.jl: A portable finite volume toolbox for scientific and neural computing. J. Open Source Softw. 6(62), 3060 (2021)

  62. Xiao, T., Cai, Q., Xu, K.: A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field. J. Comput. Phys. 332, 475–491 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Xiao, T., Frank, M.: A stochastic kinetic scheme for multi-scale flow transport with uncertainty quantification. J. Comput. Phys. 437, 110337 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Xiao, T., Frank, M.: A stochastic kinetic scheme for multi-scale plasma transport with uncertainty quantification. J. Comput. Phys. 432, 110139 (2021)

    MathSciNet  MATH  Google Scholar 

  65. Xiao, T., Kusch, J., Koellermeier, J.: FRSG: stochastic Galerkin method with flux reconstruction. https://github.com/CSMMLab/FRSG (2021). https://doi.org/10.5281/zenodo.5588317

  66. Xiao, T., Liu, C., Xu, K., Cai, Q.: A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 415, 109535 (2020)

    MathSciNet  MATH  Google Scholar 

  67. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press (2010)

  68. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    MathSciNet  MATH  Google Scholar 

  69. Yu, M., Wang, Z.J., Liu, Y.: On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods. J. Comput. Phys. 259, 70–95 (2014)

    MathSciNet  MATH  Google Scholar 

  70. Zhong, X., Shu, C.W.: Entropy stable Galerkin methods with suitable quadrature rules for hyperbolic systems with random inputs. J. Sci. Comput. 92(1), 1–30 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Tianbai Xiao is funded by the Alexander von Humboldt Foundation (Ref3.5-CHN-1210132-HFST-P). Jonas Kusch is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173. The financial support of the CogniGron research center and the Ubbo Emmius Funds (University of Groningen) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tianbai Xiao, Jonas Kusch and Julian Koellermeier. The first draft of the manuscript was written by Tianbai Xiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianbai Xiao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix Parameter Choice for Exponential Filter

Appendix Parameter Choice for Exponential Filter

While the Lasso filter does not require numerical parameter choices, the exponential filter from Sect. 4.1.1 uses several parameters which need to be determined in applications Table (13).

Table 13 Nomenclature

Different strategies exist in the literature. In [26] the filter parameter is chosen as \(\alpha = 36\), together with the filter exponent \(s=36\) to ensure that the last mode is damped to zero up to machine precision. However, the effect on the solution behavior is not clarified. In [31] the parameter choice was motivated with a number of heuristics. Firstly, the effect of the filter on the oscillation of the solution was investigated. Not surprisingly, it was found that larger parameters \(\alpha \) smooth the solution and eventually recover positivity of the filtered distribution function. Secondly, a linear stability analysis of the model linearised around its equilibrium state revealed the damping factors for each mode. It was shown that the choice \(\alpha = 36\) leads to small damping (i.e., less added diffusion) of the solution, while completely damping out the fastest mode. Lastly, the filter was tested with different parameters for the full model and the value \(\alpha = 36\) indeed performed best with respect to the solution quality. While the best choice might depend on the size of the model, the choice of \(\alpha = 36\) was robust in the test cases computed in [31] and this value was therefore used for all further tests computed therein.

In the context of the SG models here, a similar parameter study can be performed to determine a suitable value for the filter parameter. Figure 12 shows the expectation and standard deviation for a simple Burger’s equation test case and different filter parameters \(\alpha \). We choose a constant \(s=3\) as the filter exponent s is only modifying the shape of the filter strength in a mild way. Furthermore, we also choose \(N^* = 0\) fixed as no additional variables need to remain unchanged.

The results in Fig. 12 clearly visualize that a small value of the filter parameter \(\alpha \), e.g., \(\alpha =1\), is not sufficient to damp the oscillations of both the expected values as well as the standard deviation. Similarly, a very large value of the filter parameter, e.g., \(\alpha =60, 100\), also leads to oscillations. In between, there is a range of parameters, for which the oscillations become negligible. This includes the value \(\alpha =36\), which was frequently used in the literature. This indicates that the choice of \(\alpha =36\) also seems to perform well in the settings of this paper and we therefore use it in all test cases including the exponential filter.

Fig. 12
figure 12

Expected value and standard deviation for Burger’s equation and varying filter parameters \(\alpha \) of the exponential filter. The filter exponent is kept fixed at \(s=3\) and we choose \(N_* = 0\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Kusch, J., Koellermeier, J. et al. A Flux Reconstruction Stochastic Galerkin Scheme for Hyperbolic Conservation Laws. J Sci Comput 95, 18 (2023). https://doi.org/10.1007/s10915-023-02143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02143-3

Keywords

Navigation