Skip to main content

Advertisement

Log in

Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn)

  • Review Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins’ long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Ag-IgG:

Antigen-Immunoglobulin complex

APC:

Antigen presenting cells

bPL:

Bovine placental lactogen

β2M:

Beta 2 microglobulin

BSA:

Bovine serum albumin

CHO:

Chinese hamster ovary

Con A:

Concanavalin A

CLDN:

Claudin

ESCRT:

Endosomal sorting complex required for transport

FcGRT:

Fc fragment of IgG receptor transporter alpha

FcRn:

Fc receptor of the neonate

Gly236:

Glycine 236

HGF:

hepatocyte growth factor

Ig:

Immunoglobulin (G, M, A)

IGF:

Insulin-like growth factor (1, 2)

IGFBP:

Insulin-like growth factor binding protein (1-6)

IGFBP3R:

Insulin-like growth factor binding protein-3 receptor

INSR:

Insulin receptor

Lf:

Lactoferrin

M6P:

Mannose 6 phosphate receptor (IGF2 receptor)

MFGM:

Milk fat globule membrane

MaSC:

Mammary stem cell

miRNA:

microRNA

MMP:

Matrix metalloproteinase

MHC :

Major histocompatibility complex

NLS:

Nuclear localization sequence

pIgR:

Polymeric immunoglobulin receptor

PMN:

Polymorphonuclear leukocytes

PRL:

Prolactin

PR/K&R:

Prolonged Release/Kiss-and-Run mechanism

SC:

Secretory component

sIgA:

Secretory IgA

sIgM:

Secretory IGM

SCC:

Somatic cell count

TGN:

Trans Golgi network

TJ:

Tight junction

References

  1. Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia. 2010;15(2):149–68. https://doi.org/10.1007/s10911-010-9180-2.

    Article  PubMed  Google Scholar 

  2. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980;60(4):1049–106. https://doi.org/10.1152/physrev.1980.60.4.1049.

    Article  CAS  PubMed  Google Scholar 

  3. Forsyth IA. The insulin-like growth factor and epidermal growth factor families in mammary cell growth in ruminants: action and interaction with hormones. J Dairy Sci. 1996;79(6):1085–96. https://doi.org/10.3168/jds.S0022-0302(96)76462-7.

    Article  CAS  PubMed  Google Scholar 

  4. Godden S. Colostrum management for dairy calves. Vet Clin North Am Food Anim Pract. 2008;24(1):19–39. https://doi.org/10.1016/j.cvfa.2007.10.005.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Butler JE. Immunoglobulins of the mammary secretions. In: eds BLLaVRS, editor. Lactation: A Comprehensive Treatise. New York: Academic Press; 1974. p. 217–55.

  6. Butler JE, Kehrli ME. Immunoglobulins and Immunocytes in the Mammary Glandd and its Secretions. In: Bestechy JF, Beinenstock J, Lamm ME, Mayer L, McGhee JR, Strober W, editors. Mucosal Immunology. 3rd ed. Burlington, MA: Elsevier Academic Press; 2005. p. 1763–93.

    Chapter  Google Scholar 

  7. Jenness R. The composition of milk. In: VR LBS, editor. Lactation: a comprehensive treatise. New York: Academic Press; 1974. p. 3–107.

  8. Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth factors in milk. Endocr Rev. 1993;14(6):710–28. https://doi.org/10.1210/edrv-14-6-710.

    Article  CAS  PubMed  Google Scholar 

  9. Campana WM, Baumrucker CR. Hormones and growth factors in bovine milk. In: Jensen RG, editor. Handbook of Milk Composition. New York, NY: Academic Press; 1995. p. 476–94.

    Chapter  Google Scholar 

  10. Blum JW, Baumrucker CR. Insulin-like growth factors (IGFs), IGF binding proteins, and other endocrine factors in milk: role in the newborn. Adv Exp Med Biol. 2008;606:397–422. https://doi.org/10.1007/978-0-387-74087-4_16.

    Article  CAS  PubMed  Google Scholar 

  11. Fischer-Tlustos AJ, Hertogs K, van Niekerk JK, Nagorske M, Haines DM, Steele MA. Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi- and multiparous Holstein cows during the first week of lactation. J Dairy Sci. 2020;103(4):3683–95. https://doi.org/10.3168/jds.2019-17357.

    Article  CAS  PubMed  Google Scholar 

  12. Hernández-Castellano LE, Baumrucker CR, Gross J, Wellnitz O, Bruckmaier RM. Colostrum Proteomics Research: A Complex Fluid with Multiple Physiological Functions. In: de Almeida AM, Eckersall D, Miller I, editors. Proteomics in Domestic Animals: from Farm to Systems Biology. Cham: Springer International Publishing; 2018. p. 149–67.

    Chapter  Google Scholar 

  13. Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT. Immune components of bovine colostrum and milk. J Anim Sci. 2009;87(13 Suppl):3–9. https://doi.org/10.2527/jas.2008-1377.

    Article  CAS  PubMed  Google Scholar 

  14. Baumrucker CR, Burkett AM, Magliaro-Macrina AL, Dechow CD. Colostrogenesis: mass transfer of immunoglobulin G1 into colostrum. J Dairy Sci. 2010;93(7):3031–8. https://doi.org/10.3168/jds.2009-2963.

    Article  CAS  PubMed  Google Scholar 

  15. Chase CC, Hurley DJ, Reber AJ. Neonatal immune development in the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract. 2008;24(1):87–104. https://doi.org/10.1016/j.cvfa.2007.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lecce JG, Morgan DO, Matrone G. Effect of Feeding Colostral and Milk Components on the Cessation of Intestinal Absorption of Large Molecules (Closure) in Neonatal Pigs. J Nutr. 1964;84:43–8. https://doi.org/10.1093/jn/84.1.43.

    Article  CAS  PubMed  Google Scholar 

  17. Raboisson D, Trillat P, Cahuzac C. Failure of Passive Immune Transfer in Calves: A Meta-Analysis on the Consequences and Assessment of the Economic Impact. PLoS One. 2016;11(3):e0150452. https://doi.org/10.1371/journal.pone.0150452.

  18. Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, et al. Nomenclature of the proteins of cows’ milk–sixth revision. J Dairy Sci. 2004;87(6):1641–74. https://doi.org/10.3168/jds.S0022-0302(04)73319-6.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer Z, Hoflich C, Wirthgen E, Olm S, Hammon HM, Hoeflich A. Analysis of the IGF-system in milk from farm animals - Occurrence, regulation, and biomarker potential. Growth Horm IGF Res. 2017;35:1–7. https://doi.org/10.1016/j.ghir.2017.05.004.

    Article  CAS  PubMed  Google Scholar 

  20. Sabha BH, Alzahrani F, Almehdar HA, Uversky VN, Redwan EM. Disorder in Milk Proteins: Lactadherin Multifunctionality and Structure. Curr Protein Pept Sci. 2018;19(10):983–97. https://doi.org/10.2174/1389203719666180608091849.

    Article  CAS  PubMed  Google Scholar 

  21. Burrin DG, Wester TJ, Davis TA, Amick S, Heath JP. Orally administered IGF-I increases intestinal mucosal growth in formula-fed neonatal pigs. Am J Physiol. 1996;270(5 Pt 2):R1085–91. https://doi.org/10.1152/ajpregu.1996.270.5.R1085.

    Article  CAS  PubMed  Google Scholar 

  22. Hammon HM, Steinhoff-Wagner J, Flor J, Schonhusen U, Metges CC. Lactation Biology Symposium: role of colostrum and colostrum components on glucose metabolism in neonatal calves. J Anim Sci. 2013;91(2):685–95. https://doi.org/10.2527/jas.2012-5758.

    Article  CAS  PubMed  Google Scholar 

  23. Skaar TC, Baumrucker CR, Deaver DR, Blum JW. Diet effects and ontogeny of alterations of circulating insulin-like growth factor binding proteins in newborn dairy calves. J Anim Sci. 1994;72(2):421–7. https://doi.org/10.2527/1994.722421x.

    Article  CAS  PubMed  Google Scholar 

  24. Vacher PY, Bestetti G, Blum JW. Insulin-like growth factor I absorption in the jejunum of neonatal calves. Biol Neonate. 1995;68(5):354–67. https://doi.org/10.1159/000244256.

    Article  CAS  PubMed  Google Scholar 

  25. Roffler B, Fah A, Sauter SN, Hammon HM, Gallmann P, Brem G, et al. Intestinal morphology, epithelial cell proliferation, and absorptive capacity in neonatal calves fed milk-born insulin-like growth factor-I or a colostrum extract. J Dairy Sci. 2003;86(5):1797–806. https://doi.org/10.3168/jds.S0022-0302(03)73765-5.

    Article  CAS  PubMed  Google Scholar 

  26. Sparks AL, Kirkpatrick JG, Chamberlain CS, Waldner D, Spicer LJ. Insulin-like growth factor-I and its binding proteins in colostrum compared to measures in serum of Holstein neonates. J Dairy Sci. 2003;86(6):2022–9. https://doi.org/10.3168/jds.S0022-0302(03)73791-6.

    Article  CAS  PubMed  Google Scholar 

  27. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci. 2016;17(2):171. https://doi.org/10.3390/ijms17020171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625. https://doi.org/10.1146/annurev.cellbio.12.1.575.

    Article  CAS  PubMed  Google Scholar 

  29. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016;36(3):301–12. https://doi.org/10.1007/s10571-016-0366-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: MicroRNAs in bovine colostrum-Focus on their origin and potential health benefits for the calf. J Dairy Sci. 2020;103(1):1–15. https://doi.org/10.3168/jds.2019-16959.

    Article  CAS  PubMed  Google Scholar 

  31. Benmoussa A, Lee CH, Laffont B, Savard P, Laugier J, Boilard E, et al. Commercial Dairy Cow Milk microRNAs Resist Digestion under Simulated Gastrointestinal Tract Conditions. J Nutr. 2016;146(11):2206–15. https://doi.org/10.3945/jn.116.237651.

    Article  CAS  PubMed  Google Scholar 

  32. Lawless N, Vegh P, O’Farrelly C, Lynn DJ. The Role of microRNAs in Bovine Infection and Immunity. Front Immunol. 2014;5:611. https://doi.org/10.3389/fimmu.2014.00611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7(8):e43691. https://doi.org/10.1371/journal.pone.0043691.

  34. Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E. Milk-Derived Exosomes and Metabolic Regulation. Annu Rev Anim Biosci. 2019;7:245–62. https://doi.org/10.1146/annurev-animal-020518-115300.

    Article  CAS  PubMed  Google Scholar 

  35. Thery C. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baumrucker CR, Strbak VV. 5th International symposium on hormones and bioactive substances in milk: highlights. Endocr Regul. 1997;31(1):5–8.

    CAS  PubMed  Google Scholar 

  37. Bartol FF, Wiley AA, Bagnell CA. Epigenetic programming of porcine endometrial function and the lactocrine hypothesis. Reprod Domest Anim. 2008;43(Suppl 2):273–9. https://doi.org/10.1111/j.1439-0531.2008.01174.x.

    Article  PubMed  Google Scholar 

  38. Bagnell CA, Bartol FF. Review: Maternal programming of development in the pig and the lactocrine hypothesis. Animal. 2019;13(12):2978–85. https://doi.org/10.1017/S1751731119001654.

    Article  CAS  PubMed  Google Scholar 

  39. Huston GE, Patton S. Factors related to the formation of cytoplasmic crescents on milk fat globules. J Dairy Sci. 1990;73(8):2061–6. https://doi.org/10.3168/jds.S0022-0302(90)78885-6.

    Article  CAS  PubMed  Google Scholar 

  40. Sordillo LM. Mammary Gland Immunobiology and Resistance to Mastitis. Vet Clin North Am Food Anim Pract. 2018;34(3):507–23. https://doi.org/10.1016/j.cvfa.2018.07.005.

    Article  PubMed  Google Scholar 

  41. Linzell JL. Physiology of the mammary glands. Physiol Rev. 1959;39(3):534–76. https://doi.org/10.1152/physrev.1959.39.3.534.

    Article  CAS  PubMed  Google Scholar 

  42. Linzell JL, Peaker M. Changes in colostrum composition and in the permeability of the mammary epithelium at about the time of parturition in the goat. J Physiol. 1974;243(1):129–51. https://doi.org/10.1113/jphysiol.1974.sp010746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilde CJ, Addey CV, Bryson JM, Finch LM, Knight CH, Peaker M. Autocrine regulation of milk secretion. Biochem Soc Symp. 1998;63:81–90.

    CAS  PubMed  Google Scholar 

  44. Ledet MM, Vasquez AK, Rauner G, Bichoupan AA, Moroni P, Nydam DV, et al. The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity. Sci Rep. 2018;8(1):5378. https://doi.org/10.1038/s41598-018-23770-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia. 1998;3(3):233–46. https://doi.org/10.1023/a:1018707309361.

    Article  CAS  PubMed  Google Scholar 

  46. Markov AG, Kruglova NM, Fomina YA, Fromm M, Amasheh S. Altered expression of tight junction proteins in mammary epithelium after discontinued suckling in mice. Pflugers Arch. 2012;463(2):391–8. https://doi.org/10.1007/s00424-011-1034-2.

    Article  CAS  PubMed  Google Scholar 

  47. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta. 2008;1778(3):631–45. https://doi.org/10.1016/j.bbamem.2007.10.018.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with beta-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863(8):2006–16. https://doi.org/10.1016/j.bbamcr.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  49. Cowie AT, Forsyth IA, Hart IC. Hormonal control of lactation. Monogr Endocrinol. 1980;15:I-XIV, 1–275. https://doi.org/10.1007/978-3-642-81389-4.

  50. Tucker HA. Hormones, mammary growth, and lactation: a 41-year perspective. J Dairy Sci. 2000;83(4):874–84. https://doi.org/10.3168/jds.S0022-0302(00)74951-4.

    Article  CAS  PubMed  Google Scholar 

  51. Rook JA, Wheelock JV. Reviews on the progress of dairy science. Dairy Chemistry: The secretion of water and water soluble constituents in milk. J Dairy Res. 1967;34(3):273–87.

  52. Baumrucker CR, Dechow CD, Macrina AL, Gross JJ, Bruckmaier RM. Mammary immunoglobulin transfer rates following prepartum milking. J Dairy Sci. 2016;99(11):9254–62. https://doi.org/10.3168/jds.2016-11370.

    Article  CAS  PubMed  Google Scholar 

  53. Kehoe SI, Jayarao BM, Heinrichs AJ. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci. 2007;90(9):4108–16. https://doi.org/10.3168/jds.2007-0040.

    Article  CAS  PubMed  Google Scholar 

  54. Kessler EC, Bruckmaier RM, Gross JJ. Milk production during the colostral period is not related to the later lactational performance in dairy cows. J Dairy Sci. 2014;97(4):2186–92. https://doi.org/10.3168/jds.2013-7573. Epub 2014 Jan 31. PMID: 24485686.

    Article  CAS  PubMed  Google Scholar 

  55. Patton S, Canfield LM, Huston GE, Ferris AM, Jensen RG. Carotenoids of human colostrum. Lipids. 1990;25(3):159–65. https://doi.org/10.1007/BF02544331.

    Article  CAS  PubMed  Google Scholar 

  56. Godden SM, Lombard JE, Woolums AR. Colostrum Management for Dairy Calves. Vet Clin North Am Food Anim Pract. 2019;35(3):535–56. https://doi.org/10.1016/j.cvfa.2019.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Burton JL, McBride BW, Kennedy BW, Burton JH, Elsasser TH, Woodward B. Serum immunoglobulin profiles of dairy cows chronically treated with recombinant bovine somatotropin. J Dairy Sci. 1991;74(5):1589–98. https://doi.org/10.3168/jds.S0022-0302(91)78321-5. PMID: 1880268.

    Article  CAS  PubMed  Google Scholar 

  58. Smuts MP, de Bruyn S, Thompson PN, Holm DE. Serum albumin concentration of donor cows as an indicator of developmental competence of oocytes. Theriogenology. 2019;125:184–92. https://doi.org/10.1016/j.theriogenology.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  59. Samarutel J, Baumrucker CR, Gross JJ, Dechow CD, Bruckmaier RM. Quarter variation and correlations of colostrum albumin, immunoglobulin G1 and G2 in dairy cows. J Dairy Res. 2016;83(2):209–18. https://doi.org/10.1017/S0022029916000091.

    Article  CAS  PubMed  Google Scholar 

  60. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stapleton NM, Brinkhaus M, Armour KL, Bentlage AEH, de Taeye SW, Temming AR, et al. Reduced FcRn-mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Sci Rep. 2019;9(1):7363. https://doi.org/10.1038/s41598-019-40731-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stapleton NM, Andersen JT, Stemerding AM, Bjarnarson SP, Verheul RC, Gerritsen J, et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun. 2011;2:599. https://doi.org/10.1038/ncomms1608.

    Article  CAS  PubMed  Google Scholar 

  63. Aitken SL, Corl CM, Sordillo LM. Immunopathology of mastitis: insights into disease recognition and resolution. J Mammary Gland Biol Neoplasia. 2011;16(4):291–304. https://doi.org/10.1007/s10911-011-9230-4.

    Article  PubMed  Google Scholar 

  64. McGrath BA, Fox PF, McSweeney PLH, Kelly AL. Composition and properties of bovine colostrum: A review. Dairy Sci Technol. 2016:133–58.

  65. Hagiwara K, Kataoka S, Yamanaka H, Kirisawa R, Iwai H. Detection of cytokines in bovine colostrum. Vet Immunol Immunopathol. 2000;76(3–4):183–90. https://doi.org/10.1016/s0165-2427(00)00213-0.

    Article  CAS  PubMed  Google Scholar 

  66. Baumrucker CR, Macrina AL. Hormones and Regulatory Factors in Bovine Milk. Reference Module in Food Science. Elsiver; 2020. p. 1–7.

  67. Ronge H, Blum JW. Insulin-like growth factor I binding proteins in dairy cows, calves and bulls. Acta Endocrinol (Copenh). 1989;121(1):153–60. https://doi.org/10.1530/acta.0.1210153.

    Article  CAS  PubMed  Google Scholar 

  68. Zinicola M, Bicalho RC. Association of peripartum plasma insulin concentration with milk production, colostrum insulin levels, and plasma metabolites of Holstein cows. J Dairy Sci. 2019;102(2):1473–82. https://doi.org/10.3168/jds.2017-14029.

    Article  CAS  PubMed  Google Scholar 

  69. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197(3):315–22. https://doi.org/10.1084/jem.20021829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perez MD, Sanchez L, Aranda P, Sala FJ, Calvo M. Time-course levels of alpha 2-macroglobulin and albumin in cow colostrum and milk and alpha 2-macroglobulin levels in mastitic cow milk. Ann Rech Vet. 1989;20(3):251–8.

    CAS  PubMed  Google Scholar 

  71. Wall SK, Gross JJ, Kessler EC, Villez K, Bruckmaier RM. Blood-derived proteins in milk at start of lactation: Indicators of active or passive transfer. J Dairy Sci. 2015;98(11):7748–56. https://doi.org/10.3168/jds.2015-9440.

    Article  CAS  PubMed  Google Scholar 

  72. Paape MJ, Shafer-Weaver K, Capuco AV, Van Oostveldt K, Burvenich C. Immune surveillance of mammary tissue by phagocytic cells. Adv Exp Med Biol. 2000;480:259–77. https://doi.org/10.1007/0-306-46832-8_31.

    Article  CAS  PubMed  Google Scholar 

  73. Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Br J Nutr. 2000;84(Suppl 1):S75-80. https://doi.org/10.1017/s0007114500002282.

    Article  CAS  PubMed  Google Scholar 

  74. Musoke A, Rurangirwa F, Nantulya V. Biologicall properties of bovine immunoglobulins and systemic antibody responses. The Ruminant Immune System, Health, and Disease. Cambridge, UK: Cambridge University Press; 1986. p. 391–408.

  75. Butler JE. Bovine immunoglobulins: an augmented review. Vet Immunol Immunopathol. 1983;4(1–2):43–152. https://doi.org/10.1016/0165-2427(83)90056-9.

    Article  CAS  PubMed  Google Scholar 

  76. Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses. 2018;10(5). https://doi.org/10.3390/v10050237.

  77. Keenan TW. Milk lipid globules and their surrounding membrane: a brief history and perspectives for future research. J Mammary Gland Biol Neoplasia. 2001;6(3):365–71. https://doi.org/10.1023/a:1011383826719.

    Article  CAS  PubMed  Google Scholar 

  78. Affolter M, Grass L, Vanrobaeys F, Casado B, Kussmann M. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J Proteomics. 2010;73(6):1079–88. https://doi.org/10.1016/j.jprot.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  79. Frenyo VL, Butler JE, Guidry AJ. The association of extrinsic bovine IgG1, IgG2, SIgA and IgM with the major fractions and cells of milk. Vet Immunol Immunopathol. 1986;13(3):239–54. https://doi.org/10.1016/0165-2427(86)90076-0.

    Article  CAS  PubMed  Google Scholar 

  80. Pringnitz DJ, Butler JE, Guidry AJ. In vivo proteolytic activity of the mammary gland. Contribution to the origin of secretory component, beta 2-microglobulin and bovine-associated mucoprotein (BAMP) in cows milk. Vet Immunol Immunopathol. 1985;9(2):143–60. https://doi.org/10.1016/0165-2427(85)90014-5.

  81. Brandon MR, Watson DL, Lascelles AK. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Aust J Exp Biol Med Sci. 1971;49(6):613–23. https://doi.org/10.1038/icb.1971.67.

    Article  CAS  PubMed  Google Scholar 

  82. Husband AJ, Brandon MR, Lascelles AK. Absorption and endogenous production of immunoglobulins in calves. Aust J Exp Biol Med Sci. 1972;50(4):491–8. https://doi.org/10.1038/icb.1972.41.

    Article  CAS  PubMed  Google Scholar 

  83. Guidry J, Butler JE, Pearson RE, Weinland BT. IgA, igG1, IgG2, IgM, and BSA in serum and mammary secretion throughout lactation. Vet Immunol Immunopathol. 1980;1(4):329–41. https://doi.org/10.1016/0165-2427(80)90012-4.

    Article  CAS  PubMed  Google Scholar 

  84. Sasaki M, Davis CL, Larson BL. Production and turnover of IgG1 and IgG2 immunoglobulins in the bovine around parturition. J Dairy Sci. 1976;59(12):2046–55. https://doi.org/10.3168/jds.S0022-0302(76)84486-4.

    Article  CAS  PubMed  Google Scholar 

  85. Sasaki M, Larson BL, Nelson DR. Kinetic analysis of the binding of immunoglobulins IgG1 and IgG2 to bovine mammary cells. Biochim Biophys Acta. 1977;497(1):160–70. https://doi.org/10.1016/0304-4165(77)90149-0.

    Article  CAS  PubMed  Google Scholar 

  86. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog. Allergy. 1969;13:1–110. https://doi.org/10.1159/000385919.

    Article  CAS  Google Scholar 

  87. Martin WL, Bjorkman PJ. Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry. 1999;38(39):12639–47. https://doi.org/10.1021/bi9913505.

    Article  CAS  PubMed  Google Scholar 

  88. Takimori S, Shimaoka H, Furukawa J, Yamashita T, Amano M, Fujitani N, et al. Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J. 2011;278(19):3769–81. https://doi.org/10.1111/j.1742-4658.2011.08299.x.

    Article  CAS  PubMed  Google Scholar 

  89. West AP Jr, Bjorkman PJ. Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). Biochemistry. 2000;39(32):9698–708. https://doi.org/10.1021/bi000749m.

    Article  CAS  PubMed  Google Scholar 

  90. Brandon MR, Lascelles AK. Relative efficiency of absorption of IgG 1, IgG 2, IgA and IgM in the newborn calf. Aust J Exp Biol Med Sci. 1971;49(6):629–33. https://doi.org/10.1038/icb.1971.69.

    Article  CAS  PubMed  Google Scholar 

  91. Nielsen K, Sheppard J, Holmes W, Tizard I. Experimental bovine trypanosomiasis. Changes in serum immunoglobulins, complement and complement components in infected animals. Immunology. 1978;35(5):817–26.

  92. Nansen P, Nielsen K. Metabolism of bovine immunoglobulin. I. Metabolism of bovine IgG in cattle with chronic pyogenic infections. Can J Comp Med Vet Sci. 1966;30(12):327–31.

  93. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity. 2004;20(6):769–83. https://doi.org/10.1016/j.immuni.2004.05.007.

    Article  CAS  PubMed  Google Scholar 

  94. Shamay A, Homans R, Fuerman Y, Levin I, Barash H, Silanikove N, et al. Expression of albumin in nonhepatic tissues and its synthesis by the bovine mammary gland. J Dairy Sci. 2005;88(2):569–76. https://doi.org/10.3168/jds.S0022-0302(05)72719-3.

    Article  CAS  PubMed  Google Scholar 

  95. Pyzik M, Rath T, Kuo TT, Win S, Baker K, Hubbard JJ, et al. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc Natl Acad Sci U S A. 2017;114(14):E2862–71. https://doi.org/10.1073/pnas.1618291114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58(5):1836–46. https://doi.org/10.1002/hep.26338.

    Article  CAS  PubMed  Google Scholar 

  97. Kragh-Hansen U, Chuang VT, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25(6):695–704. https://doi.org/10.1248/bpb.25.695.

    Article  CAS  PubMed  Google Scholar 

  98. Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med. 2016;9:229–55. https://doi.org/10.2147/IJGM.S102819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jalan R, Bernardi M. Effective albumin concentration and cirrhosis mortality: from concept to reality. J Hepatol. 2013;59(5):918–20. https://doi.org/10.1016/j.jhep.2013.08.001.

    Article  PubMed  Google Scholar 

  100. Prinsen BH, de Sain-van der Velden MG. Albumin turnover: experimental approach and its application in health and renal diseases. Clin Chim Acta. 2004;347(1–2):1–14. https://doi.org/10.1016/j.cccn.2004.04.005.

  101. Bern M, Sand KM, Nilsen J, Sandlie I, Andersen JT. The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery. J Control Release. 2015;211:144–62. https://doi.org/10.1016/j.jconrel.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  102. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006;103(13):5084–9. https://doi.org/10.1073/pnas.0600548103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ardeniz O, Unger S, Onay H, Ammann S, Keck C, Cianga C, et al. beta2-Microglobulin deficiency causes a complex immunodeficiency of the innate and adaptive immune system. J Allergy Clin Immunol. 2015;136(2):392–401. https://doi.org/10.1016/j.jaci.2014.12.1937.

    Article  CAS  PubMed  Google Scholar 

  104. Nagase S, Shimamune K, Shumiya S. Albumin-deficient rat mutant. Science. 1979;205(4406):590–1. https://doi.org/10.1126/science.451621.

    Article  CAS  PubMed  Google Scholar 

  105. Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan Med Bull. 1990;37(1):57–84.

    CAS  PubMed  Google Scholar 

  106. Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol. 2019;10:1540. https://doi.org/10.3389/fimmu.2019.01540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lillie JH, Han SS. Secretory protein synthesis in the stimulated rat parotid gland. Temporal dissociation of the maximal response from secretion. J Cell Biol. 1973;59(3):708–21. https://doi.org/10.1083/jcb.59.3.708.

  108. Brambell FW. The transmission of immune globulins from the mother to the foetal and newborn young. Proc Nutr Soc. 1969;28(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  109. Brambell FW. The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet. 1966;2(7473):1087–93. https://doi.org/10.1016/s0140-6736(66)92190-8.

    Article  CAS  PubMed  Google Scholar 

  110. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26(3):690–6. https://doi.org/10.1002/eji.1830260327.

    Article  CAS  PubMed  Google Scholar 

  111. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology. 1996;89(4):573–8. https://doi.org/10.1046/j.1365-2567.1996.d01-775.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93(11):5512–6. https://doi.org/10.1073/pnas.93.11.5512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. https://doi.org/10.1038/nri2155.

    Article  CAS  PubMed  Google Scholar 

  114. Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol. 2002;3(12):944–55. https://doi.org/10.1038/nrm972.

    Article  CAS  PubMed  Google Scholar 

  115. Li L, Dong M, Wang XG. The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin Med J (Engl). 2016;129(4):448–55. https://doi.org/10.4103/0366-6999.176084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Drueke TB, Massy ZA. Beta2-microglobulin. Semin Dial. 2009;22(4):378–80. https://doi.org/10.1111/j.1525-139X.2009.00584.x.

    Article  PubMed  Google Scholar 

  117. Hoshi F, Nagai D, Higuchi S, Noso T, Takahashi A, Kawamura S. Purification of bovine beta 2-microglobulin from colostrum and its complete amino acid sequence. Vet Immunol Immunopathol. 1996;53(1–2):29–38. https://doi.org/10.1016/0165-2427(96)05559-6.

    Article  CAS  PubMed  Google Scholar 

  118. Praetor A, Hunziker W. beta(2)-Microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J Cell Sci. 2002;115(Pt 11):2389–97.

    Article  CAS  PubMed  Google Scholar 

  119. Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS. Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem. 2002;277(31):28038–50. https://doi.org/10.1074/jbc.M202367200.

    Article  CAS  PubMed  Google Scholar 

  120. Rodewald R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol. 1976;71(2):666–9. https://doi.org/10.1083/jcb.71.2.666.

    Article  CAS  PubMed  Google Scholar 

  121. Simister NE, Rees AR. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol. 1985;15(7):733–8. https://doi.org/10.1002/eji.1830150718.

    Article  CAS  PubMed  Google Scholar 

  122. Rodewald R, Kraehenbuhl JP. Receptor-mediated transport of IgG. J Cell Biol. 1984;99(1 Pt 2):159s–64s. https://doi.org/10.1083/jcb.99.1.159s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Story CM, Mikulska JE, Simister NE. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med. 1994;180(6):2377–81. https://doi.org/10.1084/jem.180.6.2377.

    Article  CAS  PubMed  Google Scholar 

  124. Zhu X, Peng J, Raychowdhury R, Nakajima A, Lencer WI, Blumberg RS. The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association. Biochem J. 2002;367(Pt 3):703–14. https://doi.org/10.1042/BJ20020200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Claypool SM, Dickinson BL, Wagner JS, Johansen FE, Venu N, Borawski JA, et al. Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor. Mol Biol Cell. 2004;15(4):1746–59. https://doi.org/10.1091/mbc.e03-11-0832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shah U, Dickinson BL, Blumberg RS, Simister NE, Lencer WI, Walker WA. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res. 2003;53(2):295–301. https://doi.org/10.1203/01.PDR.0000047663.81816.E3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999;104(7):903–11. https://doi.org/10.1172/JCI6968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McCarthy KM, Yoong Y, Simister NE. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci. 2000;113(Pt 7):1277–85.

    Article  CAS  PubMed  Google Scholar 

  129. Newton EE, Wu Z, Simister NE. Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci. 2005;118(Pt 11):2461–9. https://doi.org/10.1242/jcs.02367.

    Article  CAS  PubMed  Google Scholar 

  130. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol. 1996;157(8):3317–22.

    CAS  PubMed  Google Scholar 

  131. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol. 2001;62(2):93–105. https://doi.org/10.1016/s0198-8859(00)00244-5.

    Article  CAS  PubMed  Google Scholar 

  132. Ober RJ, Martinez C, Lai X, Zhou J, Ward ES. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci U S A. 2004;101(30):11076–81. https://doi.org/10.1073/pnas.0402970101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kacskovics I, Kis Z, Mayer B, West AP Jr, Tiangco NE, Tilahun M, et al. FcRn mediates elongated serum half-life of human IgG in cattle. Int Immunol. 2006;18(4):525–36. https://doi.org/10.1093/intimm/dxh393.

    Article  CAS  PubMed  Google Scholar 

  134. Sakagami M, Omidi Y, Campbell L, Kandalaft LE, Morris CJ, Barar J, et al. Expression and transport functionality of FcRn within rat alveolar epithelium: a study in primary cell culture and in the isolated perfused lung. Pharm Res. 2006;23(2):270–9. https://doi.org/10.1007/s11095-005-9226-0.

    Article  CAS  PubMed  Google Scholar 

  135. Cianga P, Cianga C, Cozma L, Ward ES, Carasevici E. The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum Immunol. 2003;64(12):1152–9. https://doi.org/10.1016/j.humimm.2003.08.025.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol. 2001;166(5):3266–76. https://doi.org/10.4049/jimmunol.166.5.3266.

    Article  CAS  PubMed  Google Scholar 

  137. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, et al. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci U S A. 2008;105(3):967–72. https://doi.org/10.1073/pnas.0711515105.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Cervenak J, Bender B, Schneider Z, Magna M, Carstea BV, Liliom K, et al. Neonatal FcR overexpression boosts humoral immune response in transgenic mice. J Immunol. 2011;186(2):959–68. https://doi.org/10.4049/jimmunol.1000353.

    Article  CAS  PubMed  Google Scholar 

  139. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol. 2003;170(7):3528–33. https://doi.org/10.4049/jimmunol.170.7.3528.

    Article  CAS  PubMed  Google Scholar 

  140. Gastinel LN, Simister NE, Bjorkman PJ. Expression and crystallization of a soluble and functional form of an Fc receptor related to class I histocompatibility molecules. Proc Natl Acad Sci U S A. 1992;89(2):638–42. https://doi.org/10.1073/pnas.89.2.638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature. 1994;372(6504):379–83. https://doi.org/10.1038/372379a0.

    Article  CAS  PubMed  Google Scholar 

  142. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9):6591–604. https://doi.org/10.1074/jbc.M009483200.

    Article  CAS  PubMed  Google Scholar 

  143. Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol. 2000;18:739–66. https://doi.org/10.1146/annurev.immunol.18.1.739.

    Article  CAS  PubMed  Google Scholar 

  144. Kuo TT, Baker K, Yoshida M, Qiao SW, Aveson VG, Lencer WI, et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol. 2010;30(6):777–89. https://doi.org/10.1007/s10875-010-9468-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006;45(15):4983–90. https://doi.org/10.1021/bi052628y.

    Article  CAS  PubMed  Google Scholar 

  146. Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, et al. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem. 2014;289(11):7812–24. https://doi.org/10.1074/jbc.M113.537563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Giesecke WH, van den Heever LW. The diagnosis of bovine mastitis with particular reference to subclinical mastitis: a critical review of relevant literature. Onderstepoort J Vet Res. 1974;41(4):169–211.

    CAS  PubMed  Google Scholar 

  148. Giesecke WH, Viljoen MH. The diagnosis of subclinical mastitis in lactating cows: a comparison of cytological methods and a monovalent radial immunodiffusion test. Onderstepoort J Vet Res. 1974;41(2):51–74.

    CAS  PubMed  Google Scholar 

  149. Liu X, Ye L, Christianson GJ, Yang JQ, Roopenian DC, Zhu X. NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J Immunol. 2007;179(5):2999–3011. https://doi.org/10.4049/jimmunol.179.5.2999.

    Article  CAS  PubMed  Google Scholar 

  150. Cervenak J, Doleschall M, Bender B, Mayer B, Schneider Z, Doleschall Z, et al. NFkappaB induces overexpression of bovine FcRn: a novel mechanism that further contributes to the enhanced immune response in genetically modified animals carrying extra copies of FcRn. MAbs. 2013;5(6):860–71. https://doi.org/10.4161/mabs.26507.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wellnitz O, Zbinden C, Luttgenau J, Bollwein H, Bruckmaier RM. Different chronological patterns of appearance of blood derived milk components during mastitis indicate different mechanisms of transfer from blood into milk. J Dairy Res. 2015;82(3):322–7. https://doi.org/10.1017/S0022029915000345.

    Article  CAS  PubMed  Google Scholar 

  152. Levieux D, Ollier A. Bovine immunoglobulin G, beta-lactoglobulin, alpha-lactalbumin and serum albumin in colostrum and milk during the early post partum period. J Dairy Res. 1999;66(3):421–30. https://doi.org/10.1017/s0022029999003581.

    Article  CAS  PubMed  Google Scholar 

  153. Poutrel B, Caffin JP, Rainard P. Physiological and pathological factors influencing bovine serum albumin content of milk. J Dairy Sci. 1983;66(3):535–41. https://doi.org/10.3168/jds.S0022-0302(83)81822-0.

    Article  CAS  PubMed  Google Scholar 

  154. Bannerman DD, Goldblum SE. Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest. 1999;79(10):1181–99.

    CAS  PubMed  Google Scholar 

  155. Bannerman DD, Chockalingam A, Paape MJ, Hope JC. The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet Immunol Immunopathol. 2005;107(3–4):201–15. https://doi.org/10.1016/j.vetimm.2005.04.012.

    Article  CAS  PubMed  Google Scholar 

  156. Huber AH, Kelley RF, Gastinel LN, Bjorkman PJ. Crystallization and stoichiometry of binding of a complex between a rat intestinal Fc receptor and Fc. J Mol Biol. 1993;230(3):1077–83. https://doi.org/10.1006/jmbi.1993.1220.

    Article  CAS  PubMed  Google Scholar 

  157. Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS, et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med. 2002;196(3):303–10. https://doi.org/10.1084/jem.20020400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ellinger I, Rothe A, Grill M, Fuchs R. Apical to basolateral transcytosis and apical recycling of immunoglobulin G in trophoblast-derived BeWo cells: effects of low temperature, nocodazole, and cytochalasin D. Exp Cell Res. 2001;269(2):322–31. https://doi.org/10.1006/excr.2001.5330.

    Article  CAS  PubMed  Google Scholar 

  159. Ellinger I, Schwab M, Stefanescu A, Hunziker W, Fuchs R. IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur J Immunol. 1999;29(3):733–44. https://doi.org/10.1002/(SICI)1521-4141(199903)29:03%3c733::AID-IMMU733%3e3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  160. Bai Y, Ye L, Tesar DB, Song H, Zhao D, Bjorkman PJ, et al. Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport. Proc Natl Acad Sci U S A. 2011;108(45):18406–11. https://doi.org/10.1073/pnas.1115348108.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li Z, Palaniyandi S, Zeng R, Tuo W, Roopenian DC, Zhu X. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci U S A. 2011;108(11):4388–93. https://doi.org/10.1073/pnas.1012861108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Baumrucker CR, Hammon H. Presence of FcRn in the intestine of newborn calves. 2013.

  163. Besser TE, McGuire TC, Gay CC, Pritchett LC. Transfer of functional immunoglobulin G (IgG) antibody into the gastrointestinal tract accounts for IgG clearance in calves. J Virol. 1988;62(7):2234–7. https://doi.org/10.1128/JVI.62.7.2234-2237.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Heinrichs AJ, Jones CM, Erickson PS, Chester-Jones H, Anderson JL. Symposium review: Colostrum management and calf nutrition for profitable and sustainable dairy farms. J Dairy Sci. 2020;103(6):5694–9. https://doi.org/10.3168/jds.2019-17408.

    Article  CAS  PubMed  Google Scholar 

  165. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25. https://doi.org/10.1038/nrm2728.

    Article  CAS  PubMed  Google Scholar 

  166. Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Nat Rev Mol Cell Biol. 2020;21(1):25–42. https://doi.org/10.1038/s41580-019-0177-4.

    Article  CAS  PubMed  Google Scholar 

  167. Schoneberg J, Lee IH, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol. 2017;18(1):5–17. https://doi.org/10.1038/nrm.2016.121.

    Article  CAS  PubMed  Google Scholar 

  168. Wernick NL, Haucke V, Simister NE. Recognition of the tryptophan-based endocytosis signal in the neonatal Fc Receptor by the mu subunit of adaptor protein-2. J Biol Chem. 2005;280(8):7309–16. https://doi.org/10.1074/jbc.M410752200.

    Article  CAS  PubMed  Google Scholar 

  169. Wu Z, Simister NE. Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem. 2001;276(7):5240–7. https://doi.org/10.1074/jbc.M006684200.

    Article  CAS  PubMed  Google Scholar 

  170. McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, et al. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci. 2001;114(Pt 8):1591–8.

    Article  CAS  PubMed  Google Scholar 

  171. Dickinson BL, Claypool SM, D’Angelo JA, Aiken ML, Venu N, Yen EH, et al. Ca2+-dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Mol Biol Cell. 2008;19(1):414–23. https://doi.org/10.1091/mbc.e07-07-0658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Berryman M, Rodewald R. Beta 2-microglobulin co-distributes with the heavy chain of the intestinal IgG-Fc receptor throughout the transepithelial transport pathway of the neonatal rat. J Cell Sci. 1995;108(Pt 6):2347–60.

    Article  CAS  PubMed  Google Scholar 

  173. D’Hooghe L, Chalmers AD, Heywood S, Whitley P. Cell surface dynamics and cellular distribution of endogenous FcRn. PLoS One. 2017;12(8): e0182695. https://doi.org/10.1371/journal.pone.0182695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mayer B, Doleschall M, Bender B, Bartyik J, Bosze Z, Frenyo LV, et al. Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J Dairy Res. 2005;72 Spec No:107–12. https://doi.org/10.1017/s0022029905001135. PMID: 16180728.

  175. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics. 2012;75(5):1486–92. https://doi.org/10.1016/j.jprot.2011.11.017.

    Article  CAS  PubMed  Google Scholar 

  176. Reinhardt TA, Lippolis JD. Bovine milk fat globule membrane proteome. J Dairy Res. 2006;73(4):406–16. https://doi.org/10.1017/S0022029906001889.

    Article  CAS  PubMed  Google Scholar 

  177. Reinhardt TA, Lippolis JD. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci. 2008;91(6):2307–18. https://doi.org/10.3168/jds.2007-0952.

    Article  CAS  PubMed  Google Scholar 

  178. Samuel M, Chisanga D, Liem M, Keerthikumar S, Anand S, Ang CS, et al. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci Rep. 2017;7(1):5933. https://doi.org/10.1038/s41598-017-06288-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106(8):2788–93. https://doi.org/10.1073/pnas.0810796106.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Mayer B, Zolnai A, Frenyo LV, Jancsik V, Szentirmay Z, Hammarstrom L, et al. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology. 2002;107(3):288–96. https://doi.org/10.1046/j.1365-2567.2002.01514.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sayed-Ahmed A, Kassab M, Abd-Elmaksoud A, Elnasharty M, El-Kirdasy A. Expression and immunohistochemical localization of the neonatal Fc receptor (FcRn) in the mammary glands of the Egyptian water buffalo. Acta Histochem. 2010;112(4):383–91. https://doi.org/10.1016/j.acthis.2009.04.002.

    Article  CAS  PubMed  Google Scholar 

  182. Leary HL Jr, Larson BL, Nelson DR. Immunohistochemical localization of IgG1 and IgG2 in prepartum and lactating bovine mammary tissue. Vet Immunol Immunopathol. 1982;3(5):509–14. https://doi.org/10.1016/0165-2427(82)90016-2.

    Article  CAS  PubMed  Google Scholar 

  183. Larson BL, Smith VR. Lactation: a comprehensive treatise. New York: Academic Press; 1974.

    Google Scholar 

  184. Viotti C. ER to Golgi-Dependent Protein Secretion: The Conventional Pathway. Methods Mol Biol. 2016;1459:3–29. https://doi.org/10.1007/978-1-4939-3804-9_1.

    Article  CAS  PubMed  Google Scholar 

  185. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3(3):259–73. https://doi.org/10.1023/a:1018711410270.

    Article  CAS  PubMed  Google Scholar 

  186. Mather IH. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J Dairy Sci. 2000;83(2):203–47. https://doi.org/10.3168/jds.S0022-0302(00)74870-3.

    Article  CAS  PubMed  Google Scholar 

  187. Patton S, Huston GE. Incidence and characteristics of cell pieces on human milk fat globules. Biochim Biophys Acta. 1988;965(2–3):146–53. https://doi.org/10.1016/0304-4165(88)90050-5.

    Article  CAS  PubMed  Google Scholar 

  188. Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor. FcRn J Immunol. 2004;172(4):2021–9. https://doi.org/10.4049/jimmunol.172.4.2021.

    Article  CAS  PubMed  Google Scholar 

  189. Sasaki M, Eigel WN, Keenan TW. Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc Natl Acad Sci U S A. 1978;75(10):5020–4. https://doi.org/10.1073/pnas.75.10.5020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol. 1999;1(1):40–4. https://doi.org/10.1038/9012.

  191. Staal RG, Mosharov EV, Sulzer D. Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci. 2004;7(4):341–6. https://doi.org/10.1038/nn1205.

    Article  CAS  PubMed  Google Scholar 

  192. Lencer WI, Blumberg RS. A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol. 2005;15(1):5–9. https://doi.org/10.1016/j.tcb.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  193. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80. https://doi.org/10.1172/JCI106279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Einarsdottir H, Ji Y, Visser R, Mo C, Luo G, Scherjon S, et al. H435-containing immunoglobulin G3 allotypes are transported efficiently across the human placenta: implications for alloantibody-mediated diseases of the newborn. Transfusion. 2014;54(3):665–71. https://doi.org/10.1111/trf.12334.

    Article  CAS  PubMed  Google Scholar 

  195. Einarsdottir HK, Stapleton NM, Scherjon S, Andersen JT, Rispens T, van der Schoot CE, et al. On the perplexingly low rate of transport of IgG2 across the human placenta. PLoS One. 2014;9(9):e108319. https://doi.org/10.1371/journal.pone.0108319.

  196. Remec Pavlin M, Hurley JH. The ESCRTs - converging on mechanism. J Cell Sci. 2020;133(18). https://doi.org/10.1242/jcs.240333.

  197. Foley JA, Otterby DE. Availability, storage, treatment, composition, and feeding value of surplus colostrum: A review. J Dairy Sci. 1978;61:1033–60.

    Article  CAS  Google Scholar 

  198. Nonnecke BJ, Smith KL. Biochemical and antibacterial properties of bovine mammary secretion during mammary involution and at parturition. J Dairy Sci. 1984;67(12):2863–72. https://doi.org/10.3168/jds.S0022-0302(84)81648-3.

    Article  CAS  PubMed  Google Scholar 

  199. McCarthy OJ, Singh K. Physico-chemical properties of milk. In: McSweeney PLH, Fox PF, editors. Advanced Dairy Chemistry. New York: Springer; 2009.

  200. Madsen BD, Rasmussen MD, Nielsen MO, Wiking L, Larsen LB. Physical properties of mammary secretions in relation to chemical changes during transition from colostrum to milk. J Dairy Res. 2004;71(3):263–72. https://doi.org/10.1017/s0022029904000263.

    Article  CAS  PubMed  Google Scholar 

  201. Tsioulpas A, Grandison AS, Lewis MJ. Changes in physical properties of bovine milk from the colostrum period to early lactation. J Dairy Sci. 2007;90(11):5012–7. https://doi.org/10.3168/jds.2007-0192.

    Article  CAS  PubMed  Google Scholar 

  202. Sebela F, Klicnik V. The relationship between milk acidity after milking and cow’s age. Zivocisna Vyroba (Animal Production). 1977;22:161–70.

    Google Scholar 

  203. Lucey JA, Dick C, Singh H, Munro PA. Dissociation of colloidal calcium-phosphate depleted csein particle as influenced by pH and concentration of calcium and phosphate. Milchwissenschaft. 1997;52:603–6.

    CAS  Google Scholar 

  204. Grabe M, Oster G. Regulation of organelle acidity. J Gen Physiol. 2001;117(4):329–44. https://doi.org/10.1085/jgp.117.4.329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wu MM, Llopis J, Adams SR, McCaffery JM, Teter K, Kulomaa MS, et al. Studying organelle physiology with fusion protein-targeted avidin and fluorescent biotin conjugates. Methods Enzymol. 2000;327:546–64. https://doi.org/10.1016/s0076-6879(00)27301-1.

    Article  CAS  PubMed  Google Scholar 

  206. Baumrucker CR, Bruckmaier RM. Colostrogenesis: IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia. 2014;19(1):103–17. https://doi.org/10.1007/s10911-013-9313-5.

    Article  PubMed  Google Scholar 

  207. Schanbacher FL, Goodman RE, Talhouk RS. Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J Dairy Sci. 1993;76(12):3812–31. https://doi.org/10.3168/jds.S0022-0302(93)77725-5.

    Article  CAS  PubMed  Google Scholar 

  208. Sanchez L, Aranda P, Perez MD, Calvo M. Concentration of lactoferrin and transferrin throughout lactation in cow’s colostrum and milk. Biol Chem Hoppe Seyler. 1988;369(9):1005–8. https://doi.org/10.1515/bchm3.1988.369.2.1005.

    Article  CAS  PubMed  Google Scholar 

  209. Reiter B. Review of the progress of dairy science: antimicrobial systems in milk. J Dairy Res. 1978;45(1):131–47. https://doi.org/10.1017/s0022029900016290.

    Article  CAS  PubMed  Google Scholar 

  210. Indyk HE, Filonzi EL, Gapper LW. Determination of minor proteins of bovine milk and colostrum by optical biosensor analysis. J AOAC Int. 2006;89(3):898–902.

    Article  CAS  PubMed  Google Scholar 

  211. Jameson GB, Anderson BF, Norris GE, Thomas DH, Baker EN. Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr D Biol Crystallogr. 1998;54(Pt 6 Pt 2):1319–35. https://doi.org/10.1107/s0907444998004417.

  212. Hao L, Shan Q, Wei J, Ma F, Sun P. Lactoferrin: Major Physiological Functions and Applications. Curr Protein Pept Sci. 2019;20(2):139–44. https://doi.org/10.2174/1389203719666180514150921.

    Article  CAS  PubMed  Google Scholar 

  213. Yang TS, Wu SC, Wang SR. Serum and milk lactoferrin concentration and the correlation with some blood components in lactating sows. Res Vet Sci. 2000;69(1):95–7. https://doi.org/10.1053/rvsc.2000.0393.

    Article  CAS  PubMed  Google Scholar 

  214. Gokce E, Atakisi O, Kirmizigul AH, Unver A Erdogan HM. Passive immunity in lambs: Serum lactoferrin concentrations as a predictor of IgG concentration and its relation to health status from birth to 12 weeks of life. Small Rumin Res. 2014;116(2–3):219–28.

  215. Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W. Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell. 2002;34(3):143–54. https://doi.org/10.1016/s0040-8166(02)00024-1.

    Article  CAS  PubMed  Google Scholar 

  216. Capuco AV, Ellis S. Bovine mammary progenitor cells: current concepts and future directions. J Mammary Gland Biol Neoplasia. 2005;10(1):5–15. https://doi.org/10.1007/s10911-005-2536-3.

    Article  CAS  PubMed  Google Scholar 

  217. Schams D. Hormonal control of lactation. Ciba Found Symp. 1976;45:27–48. https://doi.org/10.1002/9780470720271.ch3.

    Article  CAS  Google Scholar 

  218. de Fremery P. On the influence of different hormones on lactation. J Physiol. 1936;87:50P–1P.

  219. Harness JR, Anderson RR, Thompson LJ, Early DM, Younis AK. Induction of lactation by two techniques: success rate, milk composition, estrogen and progesterone in serum and milk, and ovarian effects. J Dairy Sci. 1978;61(12):1725–35. https://doi.org/10.3168/jds.S0022-0302(78)83794-1.

    Article  CAS  PubMed  Google Scholar 

  220. Hoffmann B, Goes de Pinho T, Schuler G. Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy. Exp Clin Endocrinol Diabetes. 1997;105(5):296–303. https://doi.org/10.1055/s-0029-1211768.

  221. Pape-Zambito DA, Magliaro AL, Kensinger RS. 17Beta-estradiol and estrone concentrations in plasma and milk during bovine pregnancy. J Dairy Sci. 2008;91(1):127–35. https://doi.org/10.3168/jds.2007-0481.

    Article  CAS  PubMed  Google Scholar 

  222. Gross JJ, Kessler EC, Bjerre-Harpoth V, Dechow C, Baumrucker CR, Bruckmaier RM. Peripartal progesterone and prolactin have little effect on the rapid transport of immunoglobulin G into colostrum of dairy cows. J Dairy Sci. 2014;97(5):2923–31. https://doi.org/10.3168/jds.2013-7795.

    Article  CAS  PubMed  Google Scholar 

  223. Akers RM, Heald CW, Bibb TL, McGilliard ML. Effect of prepartum milk removal on quantitative morphology of bovine lactogenesis. J Dairy Sci. 1977;60(8):1273–82. https://doi.org/10.3168/jds.S0022-0302(77)84022-8.

    Article  CAS  PubMed  Google Scholar 

  224. Akers RM, Heald CW. Stimulatory effect of prepartum milk removal on secretory cell differentiation in the bovine mammary gland. J Ultrastruct Res. 1978;63(3):316–22. https://doi.org/10.1016/s0022-5320(78)80055-0.

    Article  CAS  PubMed  Google Scholar 

  225. Ni Y, Chen Q, Cai J, Xiao L, Zhang J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol Cell Endocrinol. 2021;520: 111084. https://doi.org/10.1016/j.mce.2020.111084.

    Article  CAS  PubMed  Google Scholar 

  226. Porter JC. Proceedings: Hormonal regulation of breast development and activity. J Invest Dermatol. 1974;63(1):85–92. https://doi.org/10.1111/1523-1747.ep12678099.

    Article  CAS  PubMed  Google Scholar 

  227. Goodman GT, Akers RM, Friderici KH, Tucker HA. Hormonal regulation of alpha-lactalbumin secretion from bovine mammary tissue cultured in vitro. Endocrinology. 1983;112(4):1324–30. https://doi.org/10.1210/endo-112-4-1324.

    Article  CAS  PubMed  Google Scholar 

  228. Stark A, Wellnitz O, Dechow C, Bruckmaier R, Baumrucker C. Colostrogenesis during an induced lactation in dairy cattle. J Anim Physiol Anim Nutr (Berl). 2015;99(2):356–66. https://doi.org/10.1111/jpn.12205.

    Article  CAS  Google Scholar 

  229. Brandon MR, Husband AJ, Lascelles AK. The effect of glucocorticoid on immunoglobulin secretion into colostrum in cows. Aust J Exp Biol Med Sci. 1975;53(1):43–8. https://doi.org/10.1038/icb.1975.4.

    Article  CAS  PubMed  Google Scholar 

  230. Macrina AL, Kauf AC, Pape-Zambito DA, Kensinger RS. Induced lactation in heifers: Effects of dexamethasone and age at induction on milk yield and composition. J Dairy Sci. 2014;97(3):1446–53. https://doi.org/10.3168/jds.2013-7241.

    Article  CAS  PubMed  Google Scholar 

  231. Silva LF, VandeHaar MJ, Weber Nielsen MS, Smith GW. Evidence for a local effect of leptin in bovine mammary gland. J Dairy Sci. 2002;85(12):3277–86. https://doi.org/10.3168/jds.S0022-0302(02)74416-0.

    Article  CAS  PubMed  Google Scholar 

  232. Yamaji D, Kamikawa A, Soliman MM, Ito T, Ahmed MM, Makondo K, et al. Leptin inhibits hepatocyte growth factor-induced ductal morphogenesis of bovine mammary epithelial cells. Jpn J Vet Res. 2007;54(4):183–9.

    PubMed  Google Scholar 

  233. Palin MF, Farmer C, Duarte CRA. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Adipokines affect mammary growth and function in farm animals. J Anim Sci. 2017;95(12):5689–700. https://doi.org/10.2527/jas2017.1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Feuermann Y, Mabjeesh SJ, Shamay A. Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J Dairy Sci. 2004;87(9):2941–6. https://doi.org/10.3168/jds.S0022-0302(04)73425-6.

    Article  CAS  PubMed  Google Scholar 

  235. Anthony RV, Pratt SL, Liang R, Holland MD. Placental-fetal hormonal interactions: impact on fetal growth. J Anim Sci. 1995;73(6):1861–71. https://doi.org/10.2527/1995.7361861x.

    Article  CAS  PubMed  Google Scholar 

  236. Aloj S, Edelhoch H. The molecular properties of human chorionic somatomammotropin. J Biol Chem. 1971;246(16):5047–52.

    Article  CAS  PubMed  Google Scholar 

  237. Alvarez-Oxiley AV, de Sousa NM, Beckers JF. Native and recombinant bovine placental lactogens. Reprod Biol. 2008;8(2):85–106. https://doi.org/10.1016/s1642-431x(12)60006-0.

    Article  PubMed  Google Scholar 

  238. Byatt JC, Sorbet RH, Eppard PJ, Curran TL, Curran DF, Collier RJ. The effect of recombinant bovine placental lactogen on induced lactation in dairy heifers. J Dairy Sci. 1997;80(3):496–503. https://doi.org/10.3168/jds.S0022-0302(97)75962-9.

    Article  CAS  PubMed  Google Scholar 

  239. Byatt JC, Eppard PJ, Veenhuizen JJ, Curran TL, Curran DF, McGrath MF, et al. Stimulation of mammogenesis and lactogenesis by recombinant bovine placental lactogen in steroid-primed dairy heifers. J Endocrinol. 1994;140(1):33–43. https://doi.org/10.1677/joe.0.1400033.

    Article  CAS  PubMed  Google Scholar 

  240. Byatt JC, Eppard PJ, Munyakazi L, Sorbet RH, Veenhuizen JJ, Curran DF, et al. Stimulation of milk yield and feed intake by bovine placental lactogen in the dairy cow. J Dairy Sci. 1992;75(5):1216–23. https://doi.org/10.3168/jds.S0022-0302(92)77870-9.

    Article  CAS  PubMed  Google Scholar 

  241. Byatt JC, Warren WC, Eppard PJ, Staten NR, Krivi GG, Collier RJ. Ruminant placental lactogens: structure and biology. J Anim Sci. 1992;70(9):2911–23. https://doi.org/10.2527/1992.7092911x.

    Article  CAS  PubMed  Google Scholar 

  242. Hollmann KH. Cytology and Fine Structure of the Mammary Gland. In: Larson BLaS, V.R, editor. Lactation: A comprehensive Treatise. Academic Press, NY. p. 3–91.

  243. Daniel CW, Deome KB. Growth of Mouse Mammary Glands in Vivo after Monolayer Culture. Science. 1965;149(3684):634–6. https://doi.org/10.1126/science.149.3684.634.

    Article  CAS  PubMed  Google Scholar 

  244. Smith GH, Medina D. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci. 1988;90(Pt 1):173–83.

    Article  PubMed  Google Scholar 

  245. Chepko G, Smith GH. Mammary epithelial stem cells: our current understanding. J Mammary Gland Biol Neoplasia. 1999;4(1):35–52. https://doi.org/10.1023/a:1018752519356.

    Article  CAS  PubMed  Google Scholar 

  246. Smith GH, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203. https://doi.org/10.1186/bcr1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Brisken C, Duss S. Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective. Stem Cell Rev. 2007;3(2):147–56. https://doi.org/10.1007/s12015-007-0019-1.

    Article  CAS  PubMed  Google Scholar 

  248. Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98(14):1011–4. https://doi.org/10.1093/jnci/djj267.

    Article  CAS  PubMed  Google Scholar 

  249. Dawson CA, Visvader JE. The Cellular Organization of the Mammary Gland: Insights From Microscopy. J Mammary Gland Biol Neoplasia. 2021;26(1):71–85. https://doi.org/10.1007/s10911-021-09483-6.

    Article  PubMed  Google Scholar 

  250. Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y, et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A. 2010;107(7):2989–94. https://doi.org/10.1073/pnas.0915148107.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A. 2003;100(17):9744–9. https://doi.org/10.1073/pnas.1732707100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7(1):49–66. https://doi.org/10.1023/a:1015770423167.

    Article  PubMed  Google Scholar 

  253. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802. https://doi.org/10.1038/nature09027.

    Article  CAS  PubMed  Google Scholar 

  254. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7. https://doi.org/10.1038/nature09091.

    Article  CAS  PubMed  Google Scholar 

  255. Lydon JP. Stem cells: Cues from steroid hormones. Nature. 2010;465(7299):695–6. https://doi.org/10.1038/465695a.

    Article  CAS  PubMed  Google Scholar 

  256. Finot L, Chanat E, Dessauge F. Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty. Sci Rep. 2018;8(1):16194. https://doi.org/10.1038/s41598-018-34691-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Sordillo LM, Nickerson SC, Akers RM, Oliver SP. Secretion composition during bovine mammary involution and the relationship with mastitis. Int J Biochem. 1987;19(12):1165–72. https://doi.org/10.1016/0020-711x(87)90098-x.

    Article  CAS  PubMed  Google Scholar 

  258. Hallberg JW, Dame KJ, Chester ST, Miller CC, Fox LK, Pankey JW, et al. The visual appearance and somatic cell count of mammary secretions collected from primigravid heifers during gestation and early postpartum. J Dairy Sci. 1995;78(7):1629–36. https://doi.org/10.3168/jds.S0022-0302(95)76787-X.

    Article  CAS  PubMed  Google Scholar 

  259. Andrew SM. Effect of composition of colostrum and transition milk from Holstein heifers on specificity rates of antibiotic residue tests. J Dairy Sci. 2001;84(1):100–6. https://doi.org/10.3168/jds.S0022-0302(01)74457-8.

    Article  CAS  PubMed  Google Scholar 

  260. Leitner G, Shoshani E, Krifucks O, Chaffer M, Saran A. Milk leucocyte population patterns in bovine udder infection of different aetiology. J Vet Med B Infect Dis Vet Public Health. 2000;47(8):581–9. https://doi.org/10.1046/j.1439-0450.2000.00388.x.

    Article  CAS  PubMed  Google Scholar 

  261. Ellis JA, Hassard LE, Cortese VS, Morley PS. Effects of perinatal vaccination on humoral and cellular immune responses in cows and young calves. J Am Vet Med Assoc. 1996;208(3):393–400.

    CAS  PubMed  Google Scholar 

  262. Ostensson K, Hageltorn M, Astrom G. Differential cell counting in fraction-collected milk from dairy cows. Acta Vet Scand. 1988;29(3–4):493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Concha C. Cell types and their immunological functions in bovine mammary tissues and secretions–a review of the literature. Nord Vet Med. 1986;38(5):257–72.

    CAS  PubMed  Google Scholar 

  264. Duhamel GE, Bernoco D, Davis WC, Osburn BI. Distribution of T and B lymphocytes in mammary dry secretions, colostrum and blood of adult dairy cattle. Vet Immunol Immunopathol. 1987;14(2):101–22. https://doi.org/10.1016/0165-2427(87)90047-x.

    Article  CAS  PubMed  Google Scholar 

  265. Aranda P, Sanchez L, Perez MD, Ena JM, Calvo M. Insulin in bovine colostrum and milk: evolution throughout lactation and binding to caseins. J Dairy Sci. 1991;74(12):4320–5. https://doi.org/10.3168/jds.S0022-0302(91)78627-X.

    Article  CAS  PubMed  Google Scholar 

  266. Bar RS, Gorden P, Roth J, Kahn CR, De Meyts P. Fluctuations in the affinity and concentration of insulin receptors on circulating monocytes of obese patients: effects of starvation, refeeding, and dieting. J Clin Invest. 1976;58(5):1123–35. https://doi.org/10.1172/JCI108565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Helderman JH, Strom TB. Emergence of insulin receptors upon alloimmune T cells in the rat. J Clin Invest. 1977;59(2):338–44. https://doi.org/10.1172/JCI108646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Dror E, Dalmas E, Meier DT, Wueest S, Thevenet J, Thienel C, et al. Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18(3):283–92. https://doi.org/10.1038/ni.3659.

    Article  CAS  PubMed  Google Scholar 

  269. Tsai S, Clemente-Casares X, Zhou AC, Lei H, Ahn JJ, Chan YT, et al. Insulin Receptor-Mediated Stimulation Boosts T Cell Immunity during Inflammation and Infection. Cell Metab. 2018;28(6):922–34 e4. https://doi.org/10.1016/j.cmet.2018.08.003.

  270. Mohr JA, Leu R, Mabry W. Colostral leukocytes. J Surg Oncol. 1970;2(2):163–7. https://doi.org/10.1002/jso.2930020211.

    Article  CAS  PubMed  Google Scholar 

  271. Besser TE, Gay CC. The importance of colostrum to the health of the neonatal calf. Vet Clin North Am Food Anim Pract. 1994;10(1):107–17. https://doi.org/10.1016/s0749-0720(15)30591-0.

    Article  CAS  PubMed  Google Scholar 

  272. Logan EF. Colostral immunity to colibacillosis in the neonatal calf. Br Vet J. 1974;130(5):405–12. https://doi.org/10.1016/s0007-1935(17)35781-0.

    Article  CAS  PubMed  Google Scholar 

  273. Belknap EB, Baker JC, Patterson JS, Walker RD, Haines DM, Clark EG. The role of passive immunity in bovine respiratory syncytial virus-infected calves. J Infect Dis. 1991;163(3):470–6. https://doi.org/10.1093/infdis/163.3.470.

    Article  CAS  PubMed  Google Scholar 

  274. Liebler-Tenorio EM, Riedel-Caspari G, Pohlenz JF. Uptake of colostral leukocytes in the intestinal tract of newborn calves. Vet Immunol Immunopathol. 2002;85(1–2):33–40. https://doi.org/10.1016/s0165-2427(01)00404-4.

    Article  CAS  PubMed  Google Scholar 

  275. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  276. Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci. 2007;90(Suppl 1):E76–86. https://doi.org/10.3168/jds.2006-470.

    Article  PubMed  Google Scholar 

  277. Rosales C, Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int. 2017;2017:9042851. https://doi.org/10.1155/2017/9042851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016;273(1):156–79. https://doi.org/10.1111/imr.12439.

    Article  CAS  PubMed  Google Scholar 

  279. Vidarsson G, Stemerding AM, Stapleton NM, Spliethoff SE, Janssen H, Rebers FE, et al. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood. 2006;108(10):3573–9. https://doi.org/10.1182/blood-2006-05-024539.

    Article  CAS  PubMed  Google Scholar 

  280. Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol. 2004;4(2):89–99. https://doi.org/10.1038/nri1266.

    Article  CAS  PubMed  Google Scholar 

  281. Vegh A, Farkas A, Kovesdi D, Papp K, Cervenak J, Schneider Z, et al. FcRn overexpression in transgenic mice results in augmented APC activity and robust immune response with increased diversity of induced antibodies. PLoS One. 2012;7(4):e36286. https://doi.org/10.1371/journal.pone.0036286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Hager M, Cowland JB, Borregaard N. Neutrophil granules in health and disease. J Intern Med. 2010;268(1):25–34. https://doi.org/10.1111/j.1365-2796.2010.02237.x.

    Article  CAS  PubMed  Google Scholar 

  283. Bjerrum OW, Nissen MH, Borregaard N. Neutrophil beta-2 microglobulin: an inflammatory mediator. Scand J Immunol. 1990;32(3):233–42. https://doi.org/10.1111/j.1365-3083.1990.tb02916.x.

    Article  CAS  PubMed  Google Scholar 

  284. Stirling CM, Charleston B, Takamatsu H, Claypool S, Lencer W, Blumberg RS, et al. Characterization of the porcine neonatal Fc receptor–potential use for trans-epithelial protein delivery. Immunology. 2005;114(4):542–53. https://doi.org/10.1111/j.1365-2567.2004.02121.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Baker K, Rath T, Pyzik M, Blumberg RS. The Role of FcRn in Antigen Presentation. Front Immunol. 2014;5:408. https://doi.org/10.3389/fimmu.2014.00408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028. https://doi.org/10.1146/annurev.immunol.22.012703.104538.

    Article  CAS  PubMed  Google Scholar 

  287. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8(8):607–18. https://doi.org/10.1038/nri2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976;143(5):1283–8. https://doi.org/10.1084/jem.143.5.1283.

    Article  CAS  PubMed  Google Scholar 

  289. Baker K, Rath T, Flak MB, Arthur JC, Chen Z, Glickman JN, et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity. 2013;39(6):1095–107. https://doi.org/10.1016/j.immuni.2013.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Liu X, Lu L, Yang Z, Palaniyandi S, Zeng R, Gao LY, et al. The neonatal FcR-mediated presentation of immune-complexed antigen is associated with endosomal and phagosomal pH and antigen stability in macrophages and dendritic cells. J Immunol. 2011;186(8):4674–86. https://doi.org/10.4049/jimmunol.1003584.

    Article  CAS  PubMed  Google Scholar 

  291. Qiao SW, Kobayashi K, Johansen FE, Sollid LM, Andersen JT, Milford E, et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci U S A. 2008;105(27):9337–42. https://doi.org/10.1073/pnas.0801717105.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Baker K, Qiao SW, Kuo TT, Aveson VG, Platzer B, Andersen JT, et al. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc Natl Acad Sci U S A. 2011;108(24):9927–32. https://doi.org/10.1073/pnas.1019037108.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Heyman B. Feedback regulation by IgG antibodies. Immunol Lett. 2003;88(2):157–61. https://doi.org/10.1016/s0165-2478(03)00078-6.

    Article  CAS  PubMed  Google Scholar 

  294. Brambell FW, Hemmings WA, Morris IG. A Theoretical Model of Gamma-Globulin Catabolism. Nature. 1964;203:1352–4. https://doi.org/10.1038/2031352a0.

    Article  CAS  PubMed  Google Scholar 

  295. Tucker SP, Compans RW. Virus infection of polarized epithelial cells. Adv Virus Res. 1993;42:187–247. https://doi.org/10.1016/s0065-3527(08)60086-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Oliver SP, Smith KL. Bovine mammary involution following intramammary infusion on colchicine and endotoxin at drying off. J Dairy Sci. 1982;65(5):801–13. https://doi.org/10.3168/jds.s0022-0302(82)82269-8.

    Article  CAS  PubMed  Google Scholar 

  297. Patton S. Mechanisms of secretion: effects of colchicine and vincristine on composition and flow of milk in the goat. J Dairy Sci. 1976;59(8):1414–9. https://doi.org/10.3168/jds.S0022-0302(76)84379-2.

    Article  CAS  PubMed  Google Scholar 

  298. Patton S, Welsch U, Singh S. Intramammary infusion technique for genetic engineering of the mammary gland. J Dairy Sci. 1984;67(6):1323–6. https://doi.org/10.3168/jds.S0022-0302(84)81440-X.

    Article  CAS  PubMed  Google Scholar 

  299. Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne). 2018;9:117. https://doi.org/10.3389/fendo.2018.00117.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Nissley P, Lopaczynski W. Insulin-like growth factor receptors. Growth Factors. 1991;5(1):29–43. https://doi.org/10.3109/08977199109000269.

    Article  CAS  PubMed  Google Scholar 

  301. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63. https://doi.org/10.1210/edrv-16-2-143.

    Article  CAS  PubMed  Google Scholar 

  302. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34. https://doi.org/10.1210/edrv-16-1-3.

    Article  CAS  PubMed  Google Scholar 

  303. Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol. 2020;8:286. https://doi.org/10.3389/fcell.2020.00286.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells. 2020;9(5). https://doi.org/10.3390/cells9051261.

  305. Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol. 2014;31(1):805. https://doi.org/10.1007/s12032-013-0805-3.

    Article  CAS  PubMed  Google Scholar 

  306. Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev. 2001;22(6):818–35. https://doi.org/10.1210/edrv.22.6.0452.

    Article  CAS  PubMed  Google Scholar 

  307. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  308. Massague J, Czech MP. The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 1982;257(9):5038–45.

    Article  CAS  PubMed  Google Scholar 

  309. Dahms N, Hancock MK. P-type lectins. Biochim Biophys Acta. 2002;1572(2–3):317–40. https://doi.org/10.1016/s0304-4165(02)00317-3.

    Article  CAS  PubMed  Google Scholar 

  310. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, et al. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987;329(6137):301–7. https://doi.org/10.1038/329301a0.

    Article  CAS  PubMed  Google Scholar 

  311. MacDonald RG, Pfeffer SR, Coussens L, Tepper MA, Brocklebank CM, Mole JE, et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science. 1988;239(4844):1134–7. https://doi.org/10.1126/science.2964083.

    Article  CAS  PubMed  Google Scholar 

  312. Brown J, Jones EY, Forbes BE. Interactions of IGF-II with the IGF2R/cation-independent mannose-6-phosphate receptor mechanism and biological outcomes. Vitam Horm. 2009;80:699–719. https://doi.org/10.1016/S0083-6729(08)00625-0.

    Article  CAS  PubMed  Google Scholar 

  313. Brown J, Jones EY, Forbes BE. Keeping IGF-II under control: lessons from the IGF-II-IGF2R crystal structure. Trends Biochem Sci. 2009;34(12):612–9. https://doi.org/10.1016/j.tibs.2009.07.003.

    Article  CAS  PubMed  Google Scholar 

  314. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4(3):202–12. https://doi.org/10.1038/nrm1050.

    Article  CAS  PubMed  Google Scholar 

  315. Urayama A, Grubb JH, Sly WS, Banks WA. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci U S A. 2004;101(34):12658–63. https://doi.org/10.1073/pnas.0405042101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Bergeron JJ, Di Guglielmo GM, Dahan S, Dominguez M, Posner BI. Spatial and Temporal Regulation of Receptor Tyrosine Kinase Activation and Intracellular Signal Transduction. Annu Rev Biochem. 2016;85:573–97. https://doi.org/10.1146/annurev-biochem-060815-014659.

    Article  CAS  PubMed  Google Scholar 

  317. Kay DG, Khan MN, Posner BI, Bergeron JJ. In vivo uptake of insulin into hepatic Golgi fractions: application of the diaminobenzidine-shift protocol. Biochem Biophys Res Commun. 1984;123(3):1144–8. https://doi.org/10.1016/s0006-291x(84)80252-1.

    Article  CAS  PubMed  Google Scholar 

  318. Carpentier JL, Fehlmann M, Van Obberghen E, Gorden P, Orci L. Insulin receptor internalization and recycling: mechanism and significance. Biochimie. 1985;67(10–11):1143–5. https://doi.org/10.1016/s0300-9084(85)80112-7.

    Article  CAS  PubMed  Google Scholar 

  319. Di Guglielmo GM, Drake PG, Baass PC, Authier F, Posner BI, Bergeron JJ. Insulin receptor internalization and signalling. Mol Cell Biochem. 1998;182(1–2):59–63.

    Article  PubMed  Google Scholar 

  320. Doherty JJ 2nd, Kay DG, Lai WH, Posner BI, Bergeron JJ. Selective degradation of insulin within rat liver endosomes. J Cell Biol. 1990;110(1):35–42. https://doi.org/10.1083/jcb.110.1.35.

    Article  CAS  PubMed  Google Scholar 

  321. Posner BI. Insulin Signalling: The Inside Story. Can J Diabetes. 2017;41(1):108–13. https://doi.org/10.1016/j.jcjd.2016.07.002.

    Article  PubMed  Google Scholar 

  322. Daughaday WH, Hall K, Raben MS, Salmon WD Jr, van den Brande JL, van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature. 1972;235(5333):107. https://doi.org/10.1038/235107a0.

    Article  CAS  PubMed  Google Scholar 

  323. D’Ercole AJ, Applewhite GT, Underwood LE. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol. 1980;75(2):315–28. https://doi.org/10.1016/0012-1606(80)90166-9.

    Article  CAS  PubMed  Google Scholar 

  324. Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov. 2007;6(10):821–33. https://doi.org/10.1038/nrd2359.

    Article  CAS  PubMed  Google Scholar 

  325. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20(6):R321–39. https://doi.org/10.1530/ERC-13-0231.

    Article  CAS  PubMed  Google Scholar 

  326. Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57(7):1050–93. https://doi.org/10.1007/PL00000744.

    Article  CAS  PubMed  Google Scholar 

  327. Baumrucker CR, Stemberger BH. Insulin and insulin-like growth factor-I stimulate DNA synthesis in bovine mammary tissue in vitro. J Anim Sci. 1989;67(12):3503–14. https://doi.org/10.2527/jas1989.67123503x.

    Article  CAS  PubMed  Google Scholar 

  328. Hovey RC, MacKenzie DD, McFadden TB. The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro. In Vitro Cell Dev Biol Anim. 1998;34(5):385–92. https://doi.org/10.1007/s11626-998-0020-2.

    Article  CAS  PubMed  Google Scholar 

  329. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761–87. https://doi.org/10.1210/edrv.20.6.0382.

    Article  CAS  PubMed  Google Scholar 

  330. Bhattacharyya N, Pechhold K, Shahjee H, Zappala G, Elbi C, Raaka B, et al. Nonsecreted insulin-like growth factor binding protein-3 (IGFBP-3) can induce apoptosis in human prostate cancer cells by IGF-independent mechanisms without being concentrated in the nucleus. J Biol Chem. 2006;281(34):24588–601. https://doi.org/10.1074/jbc.M509463200.

    Article  CAS  PubMed  Google Scholar 

  331. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23(6):824–54. https://doi.org/10.1210/er.2001-0033.

    Article  CAS  PubMed  Google Scholar 

  332. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39(3 Pt 2):499–509. https://doi.org/10.1016/0092-8674(84)90457-4.

    Article  CAS  PubMed  Google Scholar 

  333. Li W, Fawcett J, Widmer HR, Fielder PJ, Rabkin R, Keller GA. Nuclear transport of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in opossum kidney cells. Endocrinology. 1997;138(4):1763–6. https://doi.org/10.1210/endo.138.4.5176.

    Article  CAS  PubMed  Google Scholar 

  334. Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol. 2002;23(1–2):101–10. https://doi.org/10.1016/s0739-7240(02)00149-2.

    Article  CAS  PubMed  Google Scholar 

  335. Liu B, Lee HY, Weinzimer SA, Powell DR, Clifford JL, Kurie JM, et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-alpha regulate transcriptional signaling and apoptosis. J Biol Chem. 2000;275(43):33607–13. https://doi.org/10.1074/jbc.M002547200.

    Article  CAS  PubMed  Google Scholar 

  336. Wang Y, Baumrucker CR. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro. Domest Anim Endocrinol. 2010;39(1):10–20. https://doi.org/10.1016/j.domaniend.2009.12.001.

    Article  CAS  PubMed  Google Scholar 

  337. Baumrucker CR, Schanbacher F, Shang Y, Green MH. Lactoferrin interaction with retinoid signaling: cell growth and apoptosis in mammary cells. Domest Anim Endocrinol. 2006;30(4):289–303. https://doi.org/10.1016/j.domaniend.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  338. Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev. 1997;18(6):801–31. https://doi.org/10.1210/edrv.18.6.0321.

    Article  CAS  PubMed  Google Scholar 

  339. Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol (Copenh). 1989;121(6):753–8. https://doi.org/10.1530/acta.0.1210753.

  340. Boes M, Booth BA, Sandra A, Dake BL, Bergold A, Bar RS. Insulin-like growth factor binding protein (IGFBP)4 accounts for the connective tissue distribution of endothelial cell IGFBPs perfused through the isolated heart. Endocrinology. 1992;131(1):327–30. https://doi.org/10.1210/endo.131.1.1377125.

    Article  CAS  PubMed  Google Scholar 

  341. Sandra A, Boes M, Dake BL, Stokes JB, Bar RS. Infused IGF-I/IGFBP-3 complex causes glomerular localization of IGF-I in the rat kidney. Am J Physiol. 1998;275(1):E32–7. https://doi.org/10.1152/ajpendo.1998.275.1.E32.

    Article  CAS  PubMed  Google Scholar 

  342. Knudtson KL, Boes M, Sandra A, Dake BL, Booth BA, Bar RS. Distribution of chimeric IGF binding protein (IGFBP)-3 and IGFBP-4 in the rat heart: importance of C-terminal basic region. Endocrinology. 2001;142(9):3749–55. https://doi.org/10.1210/endo.142.9.8353.

    Article  CAS  PubMed  Google Scholar 

  343. Ranke MB. Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab. 2015;29(5):701–11. https://doi.org/10.1016/j.beem.2015.06.003.

    Article  CAS  PubMed  Google Scholar 

  344. Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005;16(5):228–34. https://doi.org/10.1016/j.tem.2005.05.005.

    Article  CAS  PubMed  Google Scholar 

  345. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014;14(5):329–41. https://doi.org/10.1038/nrc3720.

    Article  CAS  PubMed  Google Scholar 

  346. Zapf J. Physiological role of the insulin-like growth factor binding proteins. Eur J Endocrinol. 1995;132(6):645–54. https://doi.org/10.1530/eje.0.1320645.

    Article  CAS  PubMed  Google Scholar 

  347. Werner H, LeRoith D. The role of the insulin-like growth factor system in human cancer. Adv Cancer Res. 1996;68:183–223. https://doi.org/10.1016/s0065-230x(08)60354-1.

    Article  CAS  PubMed  Google Scholar 

  348. Gibson CA, Staley MD, Baumrucker CR. Identification of IGF binding proteins in bovine milk and the demonstration of IGFBP-3 synthesis and release by bovine mammary epithelial cells. J Anim Sci. 1999;77(6):1547–57. https://doi.org/10.2527/1999.7761547x.

    Article  CAS  PubMed  Google Scholar 

  349. Vega JR, Gibson CA, Skaar TC, Hadsell DL, Baumrucker CR. Insulin-like growth factor (IGF)-I and -II and IGF binding proteins in serum and mammary secretions during the dry period and early lactation in dairy cows. J Anim Sci. 1991;69(6):2538–47. https://doi.org/10.2527/1991.6962538x.

    Article  CAS  PubMed  Google Scholar 

  350. Fowlkes JL, Serra DM. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem. 1996;271(25):14676–9. https://doi.org/10.1074/jbc.271.25.14676.

    Article  CAS  PubMed  Google Scholar 

  351. Radulescu RT. Nuclear localization signal in insulin-like growth factor-binding protein type 3. Trends Biochem Sci. 1994;19(7):278. https://doi.org/10.1016/0968-0004(94)90004-3.

    Article  CAS  PubMed  Google Scholar 

  352. Baumrucker CR, Erondu NE. Insulin-like growth factor (IGF) system in the bovine mammary gland and milk. J Mammary Gland Biol Neoplasia. 2000;5(1):53–64. https://doi.org/10.1023/a:1009515232450. PMID: 10791768 

    Article  CAS  PubMed  Google Scholar 

  353. Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC. Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin beta subunit. J Biol Chem. 2000;275(31):23462–70. https://doi.org/10.1074/jbc.M002208200.

    Article  CAS  PubMed  Google Scholar 

  354. Weinzimer SA, Gibson TB, Collett-Solberg PF, Khare A, Liu B, Cohen P. Transferrin is an insulin-like growth factor-binding protein-3 binding protein. J Clin Endocrinol Metab. 2001;86(4):1806–13. https://doi.org/10.1210/jcem.86.4.7380.

    Article  CAS  PubMed  Google Scholar 

  355. Baumrucker CR, Gibson CA, Schanbacher FL. Bovine lactoferrin binds to insulin-like growth factor-binding protein-3. Domest Anim Endocrinol. 2003;24(4):287–303. https://doi.org/10.1016/s0739-7240(03)00014-6.

    Article  CAS  PubMed  Google Scholar 

  356. Nuijens JH, van Berkel PH, Schanbacher FL. Structure and biological actions of lactoferrin. J Mammary Gland Biol Neoplasia. 1996;1(3):285–95. https://doi.org/10.1007/BF02018081.

    Article  CAS  PubMed  Google Scholar 

  357. Schedlich LJ, Graham LD. Role of insulin-like growth factor binding protein-3 in breast cancer cell growth. Microsc Res Tech. 2002;59(1):12–22. https://doi.org/10.1002/jemt.10173.

    Article  CAS  PubMed  Google Scholar 

  358. Lee KW, Liu B, Ma L, Li H, Bang P, Koeffler HP, et al. Cellular internalization of insulin-like growth factor binding protein-3: distinct endocytic pathways facilitate re-uptake and nuclear localization. J Biol Chem. 2004;279(1):469–76. https://doi.org/10.1074/jbc.M307316200.

    Article  CAS  PubMed  Google Scholar 

  359. Montarras D, L’Honore A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J. 2013;280(17):4036–50. https://doi.org/10.1111/febs.12372.

    Article  CAS  PubMed  Google Scholar 

  360. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48(3):222–72. https://doi.org/10.3109/10409238.2013.770819.

    Article  CAS  PubMed  Google Scholar 

  361. Alghamdi F, Guo M, Abdulkhalek S, Crawford N, Amith SR, Szewczuk MR. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cell Signal. 2014;26(6):1355–68. https://doi.org/10.1016/j.cellsig.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  362. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–21.

    Article  CAS  PubMed  Google Scholar 

  363. Yu TC, Chen SE, Ho TH, Peh HC, Liu WB, Tiantong A, et al. Involvement of TNF-alpha and MAPK pathway in the intramammary MMP-9 release via degranulation of cow neutrophils during acute mammary gland involution. Vet Immunol Immunopathol. 2012;147(3–4):161–9. https://doi.org/10.1016/j.vetimm.2012.04.011.

    Article  CAS  PubMed  Google Scholar 

  364. Piamya P, Tiantong A, Chen SE, Liu WB, Yu C, Nagahata H, et al. Fingerprinting of gelatinase subtypes for different topographic regions on non-retaining placenta of Holstein cows. Animal. 2015;9(3):490–9. https://doi.org/10.1017/S1751731114002420.

    Article  CAS  PubMed  Google Scholar 

  365. Delphi Complete Works of Friedrich Nietzsche (Illustrated) By Friedrich Nietzsche. 2015. Delphi Publishing Limited. East Sussex, United Kingdom. ISBN: 9781910630969.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Baumrucker.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumrucker, C.R., Macrina, A.L. & Bruckmaier, R.M. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 26, 419–453 (2021). https://doi.org/10.1007/s10911-021-09506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-021-09506-2

Keywords

Navigation