Skip to main content

Immune Surveillance of Mammary Tissue by Phagocytic Cells

  • Chapter
Biology of the Mammary Gland

Abstract

The leukocytes in milk consist of lymphocytes, neutrophil polymorphonuclear leukocytes (PMN) and macrophages. Lymphocytes together with antigen- presenting cells function in the generation of an effective immune response. Lymphocytes can be divided into two distinct subsets, T- and B- lymphocytes, that differ in function and protein products. The professional phagocytic cells of the bovine mammary gland are PMN and macrophages. In the normal mammary gland macrophages are the predominate cells which act as sentinels to invading mastitis causing pathogens. Once the invaders are detected, macrophages release chemical messengers called chemoattractants that cause the directed migration of PMN into the infection. Migration of neutrophils into mammary tissue provides the first immunological line of defense against bacteria that penetrate the physical barrier of the teat canal. However, their presence is like a double-edged sword. While the PMN are phagocytosing and destroying the invading pathogens, they inadvertently release chemicals which induces swelling of secretory epithelium cytoplasm, sloughing of secretory cells, and decreased secretory activity. Permanent scarring will result in a loss of milk production. Resident and newly migrated macrophages help reduce the damage to the epithelium by phagocytosing PMN that undergo programmed cell death through a process called apoptosis. Specific ligands on the neutrophil surface are required for directed migration and phagocytosis. In response to infection, freshly migrated leukocytes express greater numbers of cell surface receptors for immunoglobulins and complement and are more phagocytic than their counterparts in blood. However, phagocytic activity rapidly decreases with continued exposure to inhibitory factors such as milk fat globules and casein in mammary secretions. Compensatory hypertrophy in non-mastitic quarters partially compensates for lost milk production in diseased quarters. Advances in molecular biology are making available the tools, techniques, and products to study and modulate host-parasite interactions. For example the cloning and expression of proteins that bind endotoxin may provide ways of reducing damaging effects of endotoxin duri0ng acute coliform mastitis. The successful formation of bifunctional monoclonal antibodies for the targeted lysis of mastitis causing bacteria represents a new line of therapeutics for the control of mastitis in dairy cows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afford, S.C., Pongracz, J., Stockley, R.A., Crocker, J., Burnett, D. The induction by human interleukin-6 of apoptosis in the promonocytic cell line U937 and human neutrophils. Journal of Biological Chemistry, 1992, 267: 21612–21616.

    PubMed  CAS  Google Scholar 

  2. Akers, R.M., Thompson, W. Effect of induced leukocyte migration on mammary cell morphology and milk component biosynthesis. Journal of Dairy Science, 1987,70: 1685–1695.

    PubMed  CAS  Google Scholar 

  3. Asai, K., K. Kai, H. Rikiishi, S. Sugawara, Y. Maruyama, T. Yamaguchi, M. Ohta, Kumagai, K. Variation in CD4+ T and CD8+ T lymphocyte subpopulations in bovine mammary gland secretions during lactating and non-lactating periods. Veterinary Immunology Immunopathology, 1998, 65: 51–61.

    CAS  Google Scholar 

  4. Bainton, D.F., Ullyot, J.L., Farquahar, M.G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Journal of Experimental Medicine, 1971, 134: 907–934.

    Article  PubMed  CAS  Google Scholar 

  5. Bastida-Corcvera, K.F. 1992. The enhancement of mammary gland immunity through vaccination. Page 335 in Bovine Medicine: Diseases and Husbandry of Cattle. A.H. Andrews, R.W. Blowey, H. Boyd, and R.C. Eddy, ed. Blackwell Sci Publ., Cambridge, MA.

    Google Scholar 

  6. Boismenu, R., L. Feng, Y. Y. Xia, J. C. Chang, Harvan, W. L. Chemokine expression by intraepithelial gd T cells: implications for the recruitment of inflammatory cells to damage epithelia. Journal of Immunology, 1996, 157: 985–992.

    CAS  Google Scholar 

  7. Boismenu, R.. Havran, W. L. An innate view of λδ T cells. Current Opinions in Immunology, 1997, 957–63.

    Google Scholar 

  8. Boudjellab, N., Chan-Tang, H.S., Li, B.S., Zhao, X. Interleukin 8 response by bovine mammary epithelial cells to lipopolysaccharide stimulation. American Journal of Veterinary Research, 1998, 59: 1563–1567.

    PubMed  CAS  Google Scholar 

  9. Brittenden, J., S. D. Heys, J. Ross, Eremin, 0. Natural killer cells and cancer. Cancer, 1996,77:1226–1243.

    Article  PubMed  CAS  Google Scholar 

  10. Burvenich, C., Heyneman, R., Fabry, J., Van deputte-Van Messom, G., Massart-Leen, A.M., Roets, E. Possible role for bovine somatotropin (BST) during the recovery of experimentally induced E. coli mastitis in cows soon after parturition. Proc. Int. Conference on Mastitis, 1989, St. Georgen/Langsee, Karnten, Austria, 4–9.

    Google Scholar 

  11. Butcher, E. C. The regulation of lymphocyte traffic. Current Topics in Microbiology and Immunology, 1986, 128:85–122.

    PubMed  CAS  Google Scholar 

  12. Butcher, E. C., Picker, L. J. Lymphocyte homing and homeostasis. Science, 1996, 272:60–66.

    PubMed  CAS  Google Scholar 

  13. Capuco, A.V., Akers, R.M. Thymidine incorporation by lactating mammary epithelium during compensatory mammary growth in beef cattle.Journal of Dairy Science, 1990, 3:3094–3103.

    Google Scholar 

  14. Capuco, A.V., Byatt, J. Cell trunover in the mammary gland. Journal of Dairy Science, 1998, 81 (Suppl. 1):224.

    Google Scholar 

  15. Capuco, A.V., Paape, M.J., Nickerson, S.C. In vitro study of polymorphonuclear leukocyte damage to mammary tissues of lactating cows. American Journal of Veterinary Research, 1986, 47: 663–668.

    PubMed  CAS  Google Scholar 

  16. Carlson, G.P., Kaneko, J.J. Intravascular granulocyte kinetics in developing calves. American Journal of Veterinary Research, 1975, April:421–425.

    Google Scholar 

  17. Collota, F., Re, F., Polentarutti, N., Sozzani, S., Mantovani, A.Modulation of granulocyte and programmed cell death by cytokines and bacterial products. Blood, 1992, 80:2012–2020.

    Google Scholar 

  18. Cox, G., Gauldie, J., Jordana, M. Bronchial epithelial cell derived cytokines (G-CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. American Journal of Cell Molecular Biology, 1992, 7:507–517.

    CAS  Google Scholar 

  19. Daley, M. J., Coyle, P.A., Williams, T. J., Furda, G., Dougherty, R., Hayes, P. W. Staphylococcus aureus mastitis: pathogenesis and treatment with bovine interleukin-13 and interleukin—2. Journal of Dairy Science, 1991, 74:4413–4424.

    PubMed  CAS  Google Scholar 

  20. Dailey, M. O. Expression of T lymphocyte adhesion molecules: Regulation during antigen-induced T cell activation and differentiation. Critical Reviews in Immunology, 998,18:153-184.

    Google Scholar 

  21. Delcommenne, M., Letesson, J.J., Depelchin, A. Characterization of monoclonal antibodies raised against CD 11 a, CD 11 c and CD 18 in the bovine species. Proceedings International Conference on Mastitis Physiology and Pathology, University of Ghent, 1990, page 81.

    Google Scholar 

  22. DiCarlo, A.L., Paape, M.J. Comparison of C3b binding to bovine peripheral blood and mammary gland neutrophils (PMN).American Journal of Veterinary Research,1996, 57: 151–156.

    CAS  Google Scholar 

  23. Gennaro, R.B., Dewald, B., Horisberger, U., Gubler, H.U., Baggiolini, M. A novel type of cytoplasmic granule in bovine neutrophils. Journal of Cell Biology, 1983, 96:1651–1661.

    Article  PubMed  CAS  Google Scholar 

  24. Gray, G.D., Knight, K.A., Nelson, R.D., Herron, M.J.Chemotactic requirements of bovine leukocytes. American Journal of Veterinary Research, 1982, 43:757–759.

    PubMed  CAS  Google Scholar 

  25. Hamann, J., Reichmuth, J. Compensatory milk production within the bovine udder: Effects of short-term non-milking of single quarters. Journal of Dairy Research, 1990, 57: 17–22.

    PubMed  CAS  Google Scholar 

  26. Harmon, R.J., Heald, C.W. Migration of polymorphonuclear leukocytes into the bovine mammary gland during experimentally induced Staphylococcus aureus mastitis. American Journal of Veterinarian Research, 1982, 43:992–998.

    CAS  Google Scholar 

  27. Harp, J. A., Nonnecke, B. J. Regulation of mitogenic responses by bovine milk lymphocytes. Veterinary Immunology Immunopathology, 1986,11:215–224.

    CAS  Google Scholar 

  28. Heyneman, R., Burvenich, C., Vercauteren, R. Interaction between the respiratory burst activity of neutrophil leukocytes and experimentally induced Escherichia coli mastitis in cows. Journal of Dairy Science, 1990, 73:985–994.

    PubMed  CAS  Google Scholar 

  29. Hisatsune, T., A. Enomoto, K. Nishijima, Y. Minai, Y. Asano, T. Tada, Kaminogawa, S. CD8+ suppressor T cell clone capable of inhibiting the antigen-and anti-T cell receptor-induced proliferation of Th clones without cytolytic activity. Journal of Immunology, 1990, 145:2421–2426.

    CAS  Google Scholar 

  30. Holly, M., Y.S. Lin, Rogers, T.J. Induction of suppressor cells by staphylococcal enterotoxin B: identification of a suppressor cell circuit in the generation of suppressor-effector cells. Immunology, 1988, 64:643–648.

    PubMed  CAS  Google Scholar 

  31. Ishikawa, H., T. Shirahata, Hasegawa, K. Interferon-g production of mitogen stimulated peripheral lymphocytes in perinatal cows. Journal Veterinary Medical Science, 1994, 56:735–738.

    CAS  Google Scholar 

  32. Jain, N.C. Clinical interpretation of changes in leukocyte numbers and morphology.In Schalm’s Veterinary Hematology, Lea and Febiger, Philadelphia, Pennsylvania, 1986.

    Google Scholar 

  33. Janzen, J.J. Economic losses resulting from mastitis. A review, Journal of Dairy Science, 1970, 53: 1151–1160.

    PubMed  CAS  Google Scholar 

  34. Kehrli, M.E., Shuster, D.E. Factors affecting milk somatic cells and their role in health of the bovine mammary gland.Journal of Dairy Science, 1994,77:619–627.

    PubMed  Google Scholar 

  35. Klebanoff, S.J. Myeloperoxidase—mediated antimicrobial systems and their role in leukocyte function. In Biochemistry of the Phagocytic Process, North-Holland Publishing Company, London, 1970,89–114.

    Google Scholar 

  36. Lee, A., Whyte, M.K.B., Haslett, C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. Journal of Leukocyte Biology, 1993, 54: 283–291.

    PubMed  CAS  Google Scholar 

  37. Lee, C.W., Wooding, F.B.P., Kemp, P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretion, colostrum, and milk from normal cows. Journal of Dairy Science, 1980, 47:39–50.

    CAS  Google Scholar 

  38. Machugh, N. D., J.K. Mburu, M.J. Carol, C.R. Wyatt, J.A. Orden, Davis, W.C. Identification of two distinct subsets of bovine λδT cells with unique cell surface phenotype and tissue distribution. Immunology, 1997, 92:340–345.

    Article  PubMed  CAS  Google Scholar 

  39. Mackay, C.R., Hein, Marked variations in gamma delta T cell numbers and distribution throughout the life of sheep. Current Topics in Microbiology and Immunology, 1991, 173:107–111.

    PubMed  CAS  Google Scholar 

  40. Mackay, C.R., W.R. Hein, M.H. Brown, Matzinger, P. Unusual expression of CD2 in sheep: implications for T cell interactions. European Journal of Immunology, 1988, 18 (11): 1681–1688.

    PubMed  CAS  Google Scholar 

  41. Maliszewski, C.R. CD14 and immune response to lipopolysaccharide. aScience, 1990, 252: 1321–1322.

    Google Scholar 

  42. Meagher, L.C., Cousin, J.M., Seckl, J.R., Haslett, C. Opposing effects of glucocorticosteroids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. Journal of Immunology, 1996, 156: 4422–4428.

    CAS  Google Scholar 

  43. Miescher, S., M. Schreyer, C. Barras, P. Capasso, von Fliedner, V. Sparse distribution of gamma/delta T lymphocytes around human epithelial tumors predominantly infiltrated by primed/memory T cells. Cancer Immunology Immunotherapy, 1990,32:81–87

    Article  CAS  Google Scholar 

  44. Miller, J.K., Brzezinska-Slebodzinska, Madsen, F.C. Oxidative stress, antioxidants, and animal function. Journal of Dairy Science, 1993, 76:2812–2823.

    PubMed  CAS  Google Scholar 

  45. Miller, R.H., Norman, H.D., Wiggans, G.R., Wright, J.R.National survey of herd average somatic cell counts on DHI test days. National Mastitis Council Annual Meeting Proceedings, 1999, 161–162.

    Google Scholar 

  46. Miller, R.H., Paape, M.J., Fulton, L.A. The relationship of milk somatic cell count to milk yield for Holstein heifers after first calving. Journal of Dairy Science, 1993, 76:728–733.

    Google Scholar 

  47. Musoke, A.J., F.R. Rurangirwa, Nantulya, V.M. 1987. Biological properties of bovine immunoglobulins and systemic antibody responses.Page 393 in The Ruminant Immune System in Health and Disease. W.I. Morrison, ed. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  48. Nagahata, H., A. Ogawa, Y. Sanada, H. Noda, Yamamoto, S. Peripartum changes in antibody producing capabilities of lymphocytes from dairy cows. Veterinary Quarterly, 1992, 14:39–40.

    PubMed  CAS  Google Scholar 

  49. Nickerson, S.C., Heald, C.W. Histopathologic response of the bovine mammary gland to experimentally induced Staphylococcus aureus infection. American Journal of Veterinary Research, 1981, 42:1351–1354.

    PubMed  CAS  Google Scholar 

  50. Östensson, K., Hageltorn, M., Aström, G. Differential cell counting in fraction-collected milk from dairy cows. Acta Veterinaria Scandinavica, 1988, 29:493–500.

    PubMed  Google Scholar 

  51. Paape, M.J., Guidry, A.J. Effect of milking on leukocytes in the subcutaneous abdominal vein of the cow. Journal of Dairy Science, 1969, 52:998–1002.

    PubMed  CAS  Google Scholar 

  52. Paape, M.J., Guidry, A. J., Jain, N.C., Miller, R.H. Leukocytic defense mechanisms in the udder. Flemish Veterinary Journal, 1991, Supplement 1:95–109.

    Google Scholar 

  53. Paape, M.J., Guidry, A.J., Kirk, S.T., Bolt, D.J. Measurement of phagocytosis of32P-labeled Staphylococcus aureus by bovine leukocytes: Lysostaphin digestion and inhibitory effect of cream. American Journal of Veterinary Research, 1975, 36:1737–1743.

    PubMed  CAS  Google Scholar 

  54. Paape, M.J., Hafs, H.D., Snyder, W.W. Variation of estimated numbers of milk somatic cells stained with Wright’s stain or Pyronin Y-methyl green stain. Journal of Dairy Science, 1963, 46:1211–1216.

    Google Scholar 

  55. Paape, M.J., Lillius, E.M., Wiitanen, P.A., Kontio, M.P. Intramammary defense against infections induced by Escherichia coli in cows. American Journal of Veterinary Research, 1996, 57:477–482.

    PubMed  CAS  Google Scholar 

  56. Paape, M.J., Weinland, B.T. Effect of abraded intramammary device on milk yield, tissue damage and cellular composition. Journal of Dairy Science, 1988, 71:250–256.

    PubMed  CAS  Google Scholar 

  57. Paape M.J., Wergin, W.P. The leukocyte as a defense mechanism. Journal of the American Veterinary Association, 1977, 170:1214–1223.

    CAS  Google Scholar 

  58. Paape, M.J., Wergin, W.P., Guidry, A.J., Pearson, R.E. Leukocytes—the second line of defense against invading mastitis pathogens. Journal of Dairy Science, 1979, 62:135–153.

    PubMed  CAS  Google Scholar 

  59. Park, Y. H., L. K. Fox, M. J. Hamilton, Davis, W. C. Suppression of proliferative responses of BoCD8+ T lymphocytes in the mammary gland of cows infected with Staphylococcus aureus mastitis. Veterinary Immunology Immunopathology, 1993, 36:137–151.

    CAS  Google Scholar 

  60. Raubertas, R.F., Shook, G.E. Relationship between lactation measures of somatic cell concentration and milk yield. Journal of Dairy Science, 1982, 65:419–425.

    Google Scholar 

  61. Salgar, S.K., Paape, M.J., Alston-Mills, B., Peters, R.R. Modulation of bovine neutrophil functions by monoclonal antibodies. American Journal of Veterinary Research, 1994, 55: 227–233.

    PubMed  CAS  Google Scholar 

  62. Savill, J. Recognition and phagocytosis of cells undergoing apoptosis. British Medical Bulletin, 1997, 53:491–508.

    PubMed  CAS  Google Scholar 

  63. Schalm, O.W., Carroll, E. J., Jain, N.C. In Bovine Mastitis, Lea and Febiger, Philadelphia, 1971, pages 103–106.

    Google Scholar 

  64. Schwartzman, R.A., Cidlowsky, J.A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrinology Review, 1993, 14:133–151.

    CAS  Google Scholar 

  65. Semnani, M.J., Kabbur, M.B., Jain, N.C. Activation of bovine neutrophil functions by interferon-gamma, tumor necrosis factor alpha, and interleukin-1 alpha. Comparative Haematology International, 1993, 3:81–88.

    Article  CAS  Google Scholar 

  66. Shafer-Weaver, K.A., C.M. Corl, Sordillo, L.M. Shifts in bovine CD4+ subpopulations increase T-helper-2 compared with T-helper-1 effector cells during the postpartum period. Journal of Dairy Science, 1999, 82:1696–706

    PubMed  CAS  Google Scholar 

  67. Shafer-Weaver, K.A., Sordillo L.M. Bovine CD8+ suppressor lymphocytes alter immune responsiveness during the postpartum period. Veterinary Immunology Immunopathology, 1997, 56:53–64.

    CAS  Google Scholar 

  68. Shafer-Weaver, K. A., G. M. Pighetti, Sordillo, L. M. Diminished mammary gland lymphocyte functions parallel shifts in trafficking patterns during the postpartum period. Proceedings Society of Experimental Biology and Medicine, 1996, 212:271–280.

    Google Scholar 

  69. Sheldrake, R.F., Hoare, R.J.T., McGregor, G.D. Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. Journal of Dairy Science, 1983, 66:542–547.

    PubMed  CAS  Google Scholar 

  70. Smith, K.L., Harrison, J.H., Hancock, D.D., Todhunter, D.A., Conrad, H.R. Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. Journal of Dairy Science, 1984, 67:1293–1300.

    PubMed  CAS  Google Scholar 

  71. Smits, E., Burvenich, C., Guidry, A.J., Heyneman, R., Massart-Leen, A. Diapedesis across mammary epithelium reduces phagocytic and oxidative burst of bovine neutrophils. Journal of Immunology and Immunopathology, 1999, In press.

    Google Scholar 

  72. Sordillo, L.M., Nickerson, S.C. Quantification and immunoglobulin classification of plasma cells in nonlactating bovine mammary tissue. Journal of Dairy Science, 1988, 71:84–91.

    Article  PubMed  CAS  Google Scholar 

  73. Sordillo, L. M., M. J. Redmond, M. Campos, L. Warren, and L. A. Babiuk. 1991. Cytokine activity in bovine mammary gland secretions during the periparturient period. Canadian Journal of Veterinary Research, 55:298–301.

    Google Scholar 

  74. Swett, W.W., Matthews, C.A., Miller, F.W., Graves, R.R. Nature’s compensation for the lost quarter of a cow’s udder. Journal of Dairy Science, 1938, 21:7–15.

    Article  Google Scholar 

  75. Takeda, Y., Watanabe, H., Yonehara, S., Yamashita, T., Saito, S., Sendo, F. Rapid acceleration of neutrophil apoptosis by tumor necrosis factor-A. International Immunology, 1993, 5:691–694.

    PubMed  CAS  Google Scholar 

  76. Taubb, D.D., Pooenheim, J.J. Review of the chemokine meeting: Third International symposium of Chemotactic Cytokines. Cytokine, 1993:175–179

    Google Scholar 

  77. Taylor, B.C., Dellinger, J.D., Cullor, J.S., Stott, J.L. Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8+. Cell Immunology, 1994, 156:245–253.

    CAS  Google Scholar 

  78. TTrinchieri, G. Biology of natural killer cells. Advances in Immunology, 1989, 47:187–376.

    Article  Google Scholar 

  79. Van Oostveldt, K., Dosogne, H., Burvenich, C., Paape, M.J., Brochez, V., Van den Eeckhout, E. Flow cytometric procedure to detect apoptosis of bovine polymorphonuclear leukocytes in whole blood. Veterinary Immunology Immunopathology, 1999, In press.

    Google Scholar 

  80. Van Oostveldt, K., Burvenich, C., Paape, M.J. Effect of LPS on apoptosis of bovine neutrophils. European Journal of Physiology, 1999, In press.

    Google Scholar 

  81. Van Oostveldt, K., Burvenich, C., Paape, M.J., Meyer, E. The effect of diapedesis on the apoptotic response of isolated bovine neutrophils. Cell Biology International, 1999, In press.

    Google Scholar 

  82. Wang, Y. Personal communication, 1999.

    Google Scholar 

  83. Wang, Y., Paape, M.J., Detection and identification of soluble CD14 in bovine milk. Molecular Biology of the Cell, 1997, Supplement 1:85a.

    Google Scholar 

  84. Wang, Y., Paape, M.J., Leino, L., Capuco, A.V., Narva, H. Functional and phenotypic characterization of monoclonal antibodies to bovine L-selectin. American Journal of Veterinary Research, 1997, 58:1392–1401.

    PubMed  CAS  Google Scholar 

  85. Wang, Y., Paape, M.J., Segal, D.M., Rainard, P., Poutrel, B., Nakamura, Y. Production of bispecific antibodies to bovine polymorphonuclear neutrophils and to Staphylococcus aureus capsular polysaccharide type 5. Journal of Animal Science, 1998, Supplement 1:37.

    Google Scholar 

  86. Watson, R.W., Redmond, H.P., Wang, J.H., Condron, C., Bouchier-Hayes, D. Neutrophils undergo apoptosis following ingestion of Escherichia coli. Journal of Immunology, 1996, 156:3986–3992.

    CAS  Google Scholar 

  87. Whyte, M.K.B., Meagher, L.C., MacDermot, J., Haslett, C. Impairment of function in aging neutrophils is associated with apoptosis. Journal of Immunology, 1993, 150:5124–5134.

    CAS  Google Scholar 

  88. Wilde, C.J., Calvert, D.T., Daily, A., Peaker, M. The effect of goat milk fractions on synthesis of milk constituents by rabbit mammary explants and on milk yield in vivo: Evidence for autocrine control of milk secretion. Biochemistry Journal, 1987, 242:285–288.

    CAS  Google Scholar 

  89. Woolford, M.W. The relationship between mastitis and milk yield. Kieler Milchwirtschaftliche Forschungsberichte, 1985, 37:224–232.

    Google Scholar 

  90. Woolford, M.W., Williamson, J.H., Copeman, P. J.A., Napper A.R., Phillips, D.S.M., Uljee, E. An identical twin study of milk production losses due to subclinical mastitis. Proceedings Ruakura Farmers Conference, 1983, Ruakura, New Zealand, 115–119.

    Google Scholar 

  91. Worku, M., Paape, M.J., Filep, R., Miller, R.H. Effect of in vitro and in vivo migration of bovine neutrophils on binding and expression of Fc receptors for IgG2 and IgM. American Journal of Veterinary Research, 1994, 55:221–226.

    PubMed  CAS  Google Scholar 

  92. Worku, M, Paape, M.J., Marquardt, W.W. Modulation of Fc receptors for IgG on bovine polymorphonuclear neutrophils by interferon-gamma through de novo RNA transcription and protein synthesis. American Journal of Veterinary Research, 1994, 55:234–238.

    PubMed  CAS  Google Scholar 

  93. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990, 249: 1431–1436.

    PubMed  CAS  Google Scholar 

  94. Yang, T. J., Ayoub, I.A., Rewinski, M. J. Lactation stage-dependent changes of lymphocyte subpopulations in mammary secretions: inversion of CD4+/CD8+ T cell ratios at parturition. American Journal of Reproductive Immunology, 1997, 37:378–383.

    PubMed  CAS  Google Scholar 

  95. Yang, T.J., Mather, J.F., Rabinovsky, E.D. Changes in subpopulations of lymphocytes in peripheral blood, and supramammary and prescapular lymph nodes of cows with mastitis and normal cows. Veterinary Immunology Immunopathology, 1988, 18:279–85.

    CAS  Google Scholar 

  96. Zwahlen, R.D., Roth, D.R. Chemotactic competence of neutrophils from neonatal calves: functional comparison with neutrophils from adult cattle. Inflammation, 1990, 14:109–115.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Paape, M.J., Shafer-Weaver, K., Capuco, A.V., Van Oostveldt, K., Burvenich, C. (2002). Immune Surveillance of Mammary Tissue by Phagocytic Cells. In: Mol, J.A., Clegg, R.A. (eds) Biology of the Mammary Gland. Advances in Experimental Medicine and Biology, vol 480. Springer, Boston, MA. https://doi.org/10.1007/0-306-46832-8_31

Download citation

  • DOI: https://doi.org/10.1007/0-306-46832-8_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46414-0

  • Online ISBN: 978-0-306-46832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics