Skip to main content
Log in

Thermal Model Improvement in Phonon Detection Channels Using a Scintillating Crystal

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the development of a heat flow model utilizing a scintillating crystal for heat and light detection. By analyzing the measured light signals from \(\alpha\)- and \(\beta\)/\(\gamma\)-induced events in a CaMoO\(_4\) crystal, we describe the time-dependent behavior of the scintillation emission and the subsequent generation of delayed phonons in the crystal. The phonon detection channel model incorporates both prompt and delayed generation of a thermal phonons; these are absorbed in a phonon collector film on the crystal surface or converted into a thermal phonon distribution in the crystal. A reasonable agreement is observed in the comparison between the measured signals and the simulated signals derived from the model study. We attribute the observed pulse shape discrimination to the presence of the delayed phonons associated with the scintillation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. C. Enss, Cryogenic Particle Detection, vol. 99 (2005)

  2. N.E. Booth, B. Cabrera, E. Fiorini, Low-temperature particle detectors. Ann. Rev. Nucl. Particle Sci. 46(1), 471–532 (1996)

    Article  ADS  Google Scholar 

  3. K. Pretzl, Cryogenic calorimeters in Astro and particle physics. Nucl. Instr. Meth. A 454(1), 114–127 (2000)

    Article  ADS  Google Scholar 

  4. E. Fiorini, Neutrino physics with cryogenic detectors. Progress Particle Nucl. Phys. 64(2), 241–248 (2010)

    Article  ADS  Google Scholar 

  5. Y.-H. Kim, S.-J. Lee, B. Yang, Superconducting detectors for rare event searches in experimental astroparticle physics. Supercond. Sci. Technol. 35(6), 063001 (2022). https://doi.org/10.1088/1361-6668/ac6a1c

    Article  ADS  Google Scholar 

  6. Y.C. Lee, H.B. Kim, H.L. Kim, A lab-scale experiment for keV sterile neutrino search. J. Low Temp. Phys. 209(5–6), 919–926 (2022)

    Article  ADS  Google Scholar 

  7. H.B. Kim, D.H. Ha, E.J. Jeon, Status and performance of the AMoRE-I experiment on neutrinoless double beta decay. J. Low Temp. Phys. 209(5–6), 962–970 (2022). https://doi.org/10.1007/s10909-022-02880-z

    Article  ADS  Google Scholar 

  8. E. Armengaud, C. Augier, A.S. Barabash, The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects. Eur. Phys. J. C 80(1), 1–15 (2020)

    Article  Google Scholar 

  9. H. Abele, G. Angloher, A. Bento, Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture. Phys. Rev. Lett. 130(21), 211802 (2023)

    Article  ADS  Google Scholar 

  10. S.-I. Tamura, Spontaneous decay rates of la phonons in quasi-isotropic solids. Phys. Rev. B 31(4), 2574 (1985)

    Article  ADS  Google Scholar 

  11. H.J. Maris, S.-I. Tamura, Anharmonic decay and the propagation of phonons in an isotopically pure crystal at low temperatures: application to dark-matter detection. Phys. Rev. B 47(2), 727 (1993)

    Article  ADS  Google Scholar 

  12. A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2017), pp.20–77

    Google Scholar 

  13. L. Gironi, Pulse shape analysis with scintillating bolometers. J. Low Temp. Phys. 167(3), 504–509 (2012)

    Article  ADS  Google Scholar 

  14. C. Enss, A. Fleischmann, K. Horst, Metallic magnetic calorimeters for particle detection. J. Low Temp. Phys. 121(3–4), 137–176 (2000). https://doi.org/10.1023/A:1004863823166

    Article  ADS  Google Scholar 

  15. G.B. Kim, A 0\(\nu \beta \beta\) search using large scintillating crystal with metallic magneticcalorimeter. PhD thesis, Seoul National University, Seoul, Korea (February 2016)

  16. G.B. Kim, J.H. Choi, H.S. Jo, Heat and light measurement of a \({}^{40}\text{ Ca}^{100}\text{ MoO}_4\) crystal for the AMoRE double beta decay experiment. IEEE Trans. Nucl. Sci. 63(2), 539–542 (2016)

    Article  ADS  Google Scholar 

  17. G.B. Kim, J.H. Choi, H.S. Jo, Novel measurement method of heat and light detection for neutrinoless double beta decay. Astropart. Phys. 91, 105–112 (2017). https://doi.org/10.1016/j.astropartphys.2017.02.009

    Article  ADS  Google Scholar 

  18. X. Zhang, J. Lin, V. Mikhailik, H. Kraus, Studies of scintillation properties of \(\text{ CaMoO}_4\) at millikelvin temperatures. Appl. Phys. Lett. 106(24), 241904 (2015)

    Article  ADS  Google Scholar 

  19. O. Stenzel, The Physics of Thin Film Optical Spectra (Springer, Berlin, 2015)

    Google Scholar 

  20. Y.H. Kim, H. Eguchi, C. Enss, Measurements and modeling of the thermal properties of a calorimeter having a sapphire absorber. Nucl. Instr. Meth. A 520(1), 208–211 (2004)

    Article  ADS  Google Scholar 

  21. G.B. Kim, S. Choi, Y.S. Jang, Thermal model and optimization of a large crystal detector using a metallic magnetic calorimeter. J. Low Temp. Phys. 176(5–6), 637–643 (2014)

    Article  ADS  Google Scholar 

  22. I. Kim, H.S. Jo, C.S. Kang, Application of metallic magnetic calorimeter in rare event search. Supercond. Sci. Technol. 30(9), 094005 (2017)

    Article  ADS  Google Scholar 

  23. H. Kim, Y.-H. Kim, K.-R. Woo, Cryogenic particle detection based on magnetic microcalorimeters for rare event searches. Eur. Phys. J. Plus 138(6), 518 (2023)

    Article  Google Scholar 

  24. S.G. Kim, J.-A. Jeon, H.B. Kim, Low temperature property study of MMCs used for neutrinoless double beta decay. IEEE Trans. Appl. Supercond. 31(5), 1–5 (2021). https://doi.org/10.1109/TASC.2021.3066179

    Article  Google Scholar 

  25. F. Pröbst, M. Frank, S. Cooper, Model for cryogenic particle detectors with superconducting phase transition thermometers. J. Low Temp. Phys. 100, 69–104 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by Grant no. IBS-R016-A2. The authors are grateful to G.B. Kim for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.R. Woo wrote the main manuscript text.

Corresponding author

Correspondence to K. R. Woo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, K.R., Chung, J.S., Hwang, D.H. et al. Thermal Model Improvement in Phonon Detection Channels Using a Scintillating Crystal. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03089-y

Keywords

Navigation