Skip to main content
Log in

Model for cryogenic particle detectors with superconducting phase transition thermometers

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 ke V (FWHM) has been obtained for 60 keV photons. The signals consist of two components: a fast one and a slow one, with decay times of 1.5 ms and 30–60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T ∼ 80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. Fifth Int. Workshop on Low Temperature Detectors, July 29–Aug. 3, 1993, Berkeley, California, USA, pub. inJ. Low Temp. Phys. 93 (1993).

  2. W. Seidel, G. Forster, W. Christen, F. von Feilitzsch, H. Göbel, F. Pröbst, and R. L. Mößbauer,Phys. Lett. B 236, 483 (1990).

    Google Scholar 

  3. P. Ferger, P. Colling, S. Cooper, D. Dummer, M. Frank, U. Nagel, A. Nucciotti, F. Pröbst, and W. Seidel,Phys. Lett. B 323, 95 (1994).

    Google Scholar 

  4. M. Frank, PhD Thesis (in German), MPI preprint MPI-PhE/93-16.

  5. M. Frank, D. Dummer, S. Cooper, J. Igalson, F. Pröbst, and W, Seidel,Nucl. Instr. and Meth. A 345, 367 (1994).

    Google Scholar 

  6. U. Nagel, A. Nowak, H.-J. Gebauer, P. Colling, S. Cooper, D. Dummer, P. Ferger, M. Frank, J. Igalson, A. Nucciotti, F. Probst, and W. Seidel,J. Appl. Phys. B 78, 4262 (1994).

    Google Scholar 

  7. S. Tamura,Phys. Rev. B 31, 2574 (1985).

    Google Scholar 

  8. S. Tamura and H. J. Maris,Phys. Rev. B 31, 2592 (1985).

    Google Scholar 

  9. W. Knaak, T. Hauß, M. Kummrow, and M. Meißner, inPhonon Scattering in Condensed Matter 5, A. C. Anderson and J. P. Wolfe, eds. (Springer, Berlin, 1986), p. 174.

    Google Scholar 

  10. A. B. Pippard,Philos. Mag. 36, 1104 (1955).

    Google Scholar 

  11. M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen,Phys. Rev. Lett. 55, 422 (1985).

    Google Scholar 

  12. J. P. Harrison,J. Low. Temp. Phys. 37, 467 (1979).

    Google Scholar 

  13. J. Liu and N. Giordano,Phys. Rev. B 43, 3928 (1991).

    Google Scholar 

  14. J. F. DiTusa, K. Lin, M. Park, M. S. Isaacson, and J. M. Parpia,Phys. Rev. Lett. 68, 1156 (1992).

    Google Scholar 

  15. J. A. Snow,Phys. Rev. 172, 455 (1968).

    Google Scholar 

  16. P. Colling, A. Nucciotti, W. Seidel, F. Pröbst, S. Cooper, D. Dummer, P. Ferger, M. Frank, J. Igalson, U. Nagel, A. Rulofs, and L. Stodolsky,J. of Low Temp. Phys. 93, 549 (1993); P. Colling, A. Nucciotti, C. Bucci, S. Cooper, P. Ferger, M. Frank, U. Nagel, F. Pröbst, and W. Seidel,Nucl. Instr. and Meth. A 354, 408 (1995).

    Google Scholar 

  17. A. C. Anderson, inNonequilibrium Superconductivity, Phonons, and Kapitza Boundaries, edited by K. E. Gray (Plenum, New York, 1981).

    Google Scholar 

  18. A. F. G. Wyatt, inNonequilibrium Superconductivity, Phonons, and Kapitza Boundaries, edited by K. E. Gray (Plenum, New York, 1981).

    Google Scholar 

  19. J. R. Olson and R. O. Pohl,J. Low Temp. Phys. 94, 39 (1994).

    Google Scholar 

  20. C. Höss, J. P. Wolfe, and H. Kinder,Physev. Lett. 64, 1134 (1990).

    Google Scholar 

  21. O. Weis,Z. Phys. B 34, 55 (1979).

    Google Scholar 

  22. S. B. Kaplan,J. Low. Temp. Phys. 37, 343 (1979).

    Google Scholar 

  23. Simmons and Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (MIT Press, Cambridge., Mass., 1971).

    Google Scholar 

  24. G. A. Northrop and J. P. Wolfe,Phys. Rev. B 22, 6196 (1980).

    Google Scholar 

  25. I. Federov,Theory of Elastic Waves in Crystals (Plenum, New York, 1968).

    Google Scholar 

  26. H. Kinder and K. Weiss,J. Phys.: Condens. Matter 5, 2063 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pröbst, F., Frank, M., Cooper, S. et al. Model for cryogenic particle detectors with superconducting phase transition thermometers. J Low Temp Phys 100, 69–104 (1995). https://doi.org/10.1007/BF00753837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00753837

Keywords

Navigation