Skip to main content
Log in

Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μb, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Mod. Phys. 70, 1039 (1998).

    Article  Google Scholar 

  2. F.S. Hickernell, IEEE Trans. Ultrason. 52, 737 (2005).

    Google Scholar 

  3. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    Article  Google Scholar 

  4. A.J. Millis, B.I. Shraiman, and R. Muller, Phys. Rev. Lett. 77, 175 (1996).

    Article  Google Scholar 

  5. Y. Tokura, eds., Advances in condensed matter science, Vol. 2 (The Netherlands: Gordan and Breach, 2000).

    Google Scholar 

  6. M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008).

    Article  Google Scholar 

  7. N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Nat. Commun. 6, 6677 (2015).

    Article  Google Scholar 

  8. J.F. Scott, Nat. Mater. 6, 256 (2007).

    Article  Google Scholar 

  9. Y. Tokura and N. Nagaosa, Science 288, 462 (2000).

    Article  Google Scholar 

  10. S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Supercond. Nov. Magn. 30, 3055 (2017).

    Article  Google Scholar 

  11. S.A. Dar, V. Srivastava, U.K. Sakalle, S.A. Khandy, and D.C. Gupta, J. Supercond. Nov. Magn. 31, 141 (2018).

    Article  Google Scholar 

  12. S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4574-2.

  13. S.A. Dar, V. Srivastava, U.K. Sakalle, A. Rashid, and G. Pagare, Mater. Res. Express 5, 026106 (2018).

    Article  Google Scholar 

  14. Z. Ali, I. Ahmad, B. Amin, J. Maqsood, A. Afaq, M. Maqbool, I. Khan, and M. Zahid, Opt. Mat. 33, 553 (2011).

    Article  Google Scholar 

  15. Z. Ali, I. Ahmad, and A.H. Reshak, Phys. B 410, 217 (2013).

    Article  Google Scholar 

  16. B. Sahli, H. Bouafia, B. Abidri, A. Abdellaoui, S. Hiadsi, A. Akriche, N. Benkhettou, and D. Rached, J Alloys Compd. 635, 163 (2015).

    Article  Google Scholar 

  17. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, and J. Luitz, Introduction to WIEN2 K, An Augmented plane wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  18. K. Schwarz, P. Blaha, and G.K.H. Madsen, Comp. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  20. S.A. Dar, S.A. Khandy, I. Islam, D.C. Gupta, U.K. Sakalle, V. Srivastava, and K. Parray, Chin. J. Phys. 55, 1769 (2017).

    Article  Google Scholar 

  21. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  22. K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 422, 163 (2012).

    Article  Google Scholar 

  23. K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 414, 316 (2011).

    Article  Google Scholar 

  24. M.A. Blanco, A.M. Pendas, and E.J. Francisco, J. Mol. Struct. Theochem. 268, 245 (1996).

    Article  Google Scholar 

  25. A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).

    Article  Google Scholar 

  26. A. Otero-de-la-Roza and V. Luaña, Phys. Rev. B 84, 184103 (2011).

    Article  Google Scholar 

  27. Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  28. A.G. Petukhov and I.I. Mazin, Phys. Rev. B 67, 153106 (2003).

    Article  Google Scholar 

  29. P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).

    Article  Google Scholar 

  30. V.I. Aisimov, I.V. Solovye, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  Google Scholar 

  31. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  32. T. Charpin, A Package for Calculating elastic tensors of cubic phases using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001).

  33. F. Birch, J. Appl. Phys. 9, 279 (1938).

    Article  Google Scholar 

  34. J. Fuger, R.G. Haire, and J.R. Peterson, J. Alloys Compd. 200, 181 (1993).

    Article  Google Scholar 

  35. R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).

    Article  Google Scholar 

  36. R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).

    Google Scholar 

  37. J.B. Goodenogh, Rep. Prog. Phys. 67, 1915 (2004).

    Article  Google Scholar 

  38. L.E. Russel, D.L. Harrison, and N.H. Brett, J. Nucl. Mater. 2, 310 (1960).

    Article  Google Scholar 

  39. N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Int. J. Hydrog. Energy 35, 7295 (2010).

    Article  Google Scholar 

  40. P.L. Yan, J.M. Zhang, B. Zhou, and K.W. Xu, J. Phys. D:Appl. Phys. 49, 255002 (2016).

    Article  Google Scholar 

  41. S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).

    Article  Google Scholar 

  42. S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).

    Article  Google Scholar 

  43. G.V. Sinko and N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002).

    Article  Google Scholar 

  44. R. Hill, Proc. Phy. Soc. London 65, 349 (1952).

    Article  Google Scholar 

  45. A. Reuss and Z. Angew, Mater. Phys. 9, 49 (1929).

    Google Scholar 

  46. V. Tvergaard and J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988).

    Article  Google Scholar 

  47. D.G. Pertifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  48. J. Haines, J.M. Leger, and G. Bocquillon, Ann. Rev. Mater. Sci. 31, 1 (2001).

    Article  Google Scholar 

  49. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  50. E. Schreiber, O.L. Anderson, and N. Soga, Elastic constants and measurements (New York: M.C Graw Hill, 1973).

    Google Scholar 

  51. K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, and R. Ahmad, et al., J. Electr. Mater. 45, 3479 (2016).

    Article  Google Scholar 

  52. L. Quiang, H. Duo-Hui, C. Qi-Long, and W. Fan-Hou, Chin. Phys. B 22, 037101 (2013).

    Article  Google Scholar 

  53. A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S.A., Srivastava, V., Sakalle, U.K. et al. Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide. J. Electron. Mater. 47, 3809–3816 (2018). https://doi.org/10.1007/s11664-018-6251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6251-4

Keywords

Navigation