Skip to main content
Log in

Bio-fabrication of Silver–Zinc Bimetallic Nanoparticles and Its Antibacterial and Dye Degradation Activity

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work presents an environmentally friendly approach to synthesizing silver-zinc oxide (Ag-Zn) bimetallic nanoparticles using domestic waste of kiwi (Actinidia chinensis var. deliciosa) peel extract that acts as a reducing and stabilizing agent. The fabricated nanoparticles were characterized using various techniques such as UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). The antimicrobial and catalytic activity of the fabricated Ag–Zn were investigated. The antimicrobial activity against gram-positive Staphylococcus aureus (SA), Bacillus subtilis (BS), and gram-negative Klebsiella pneumonia (KP) strains were evaluated and it was found that KP showed higher zone of inhibition i.e.12 mm, then followed by 11 mm, and 9 mm for SA and BS respectively. For the catalytic activity, more than 85% of methyl red, 93% of phenol red, and 78% of eosin yellow dyes were degraded in 1 h. The green synthesis method presented in this study provides a sustainable and non-toxic synthesis route while simultaneously remediating the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Ramesh, K. Saravanan, P. Manogar, J. Johnson, E. Vinoth, M. Mayakannan, Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens. Bio-Sens. Res. 31, 100399 (2021). https://doi.org/10.1016/j.sbsr.2021.100399

    Article  Google Scholar 

  2. M. Hosny, M. Fawzy, A.S. Eltaweil, Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-11014-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. X. Xie et al., Ag nanoparticles cluster with pH-Triggered reassembly in targeting antimicrobial applications. Adv. Func. Mater. 30(17), 2000511 (2020). https://doi.org/10.1002/adfm.202000511

    Article  CAS  Google Scholar 

  4. S. Nayak, L.C. Goveas, C. Vaman Rao, Biosynthesis of Silver nanoparticles using turmeric extract and evaluation of its anti-bacterial activity and catalytic reduction of methylene blue, in Materials, Energy and Environment Engineering. ed. by R.B. Mohan, G. Srinikethan, B.C. Meikap (Springer, Singapore, 2017), pp.257–265. https://doi.org/10.1007/978-981-10-2675-1_31

    Chapter  Google Scholar 

  5. V. Kanikireddy, K. Varaprasad, M.S. Rani, P. Venkataswamy, B.J. Mohan Reddy, M. Vithal, Biosynthesis of CMC-Guar gum-Ag0 nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries. Carbohydr. Polym. 236, 116053 (2020). https://doi.org/10.1016/j.carbpol.2020.116053

    Article  CAS  PubMed  Google Scholar 

  6. Z. Luksiene, N. Rasiukeviciute, B. Zudyte, N. Uselis, Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol., B 203, 111656 (2020). https://doi.org/10.1016/j.jphotobiol.2019.111656

    Article  CAS  PubMed  Google Scholar 

  7. A. Farahi, M. Achak, L. El Gaini, M.A. El Mhammedi, M. Bakasse, Silver particles-modified carbon paste electrodes for differential pulse voltammetric determination of paraquat in ambient water samples. J. Assoc. Arab Univ. Basic Appl. Sci. 19(1), 37–43 (2016). https://doi.org/10.1016/j.jaubas.2014.06.011

    Article  Google Scholar 

  8. S. Nayak, M.K.B. Dr, L. Goveas, C.V. Rao, S. Sajankila, Investigation of nonlinear optical properties of AgNPs synthesized using Cyclea peltata leaf extract post OVAT optimization. BioNanoScience (2021). https://doi.org/10.1007/s12668-021-00875-w

    Article  Google Scholar 

  9. V.B. Patil, D. Ilager, S.M. Tuwar, K. Mondal, N.P. Shetti, Nanostructured ZnO-based electrochemical sensor with anionic surfactant for the electroanalysis of trimethoprim. Bioengineering (2022). https://doi.org/10.3390/bioengineering9100521

    Article  PubMed  PubMed Central  Google Scholar 

  10. H. Kumar, N. Venkatesh, H. Bhowmik, A. Kuila, Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res 4(2), 3765–3775 (2018)

    Google Scholar 

  11. D.S. Idris et al., Polymer-based nanocarriers for biomedical and environmental applications. e-Polymers (2023). https://doi.org/10.1515/epoly-2023-0049

    Article  Google Scholar 

  12. T. Mazhar, V. Shrivastava, R.S. Tomar, Green synthesis of bimetallic nanoparticles and its applications: a review. J. Pharm. Sci. Res. 9(2), 102 (2017)

    CAS  Google Scholar 

  13. M.C. Jobe, D.M. Mthiyane, M. Mwanza, D.C. Onwudiwe, Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon 8(12), e12243 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Nayak, C.V. Rao, S. Mutalik, Exploring bimetallic Au–Ag core shell nanoparticles reduced using leaf extract of Ocimum tenuiflorum as a potential antibacterial and nanocatalytic agent. Chem. Pap. 76(10), 6487–6497 (2022). https://doi.org/10.1007/s11696-022-02299-6

    Article  CAS  Google Scholar 

  15. M. Barwant et al., Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. Chem. Pap. 76(7), 4309–4321 (2022). https://doi.org/10.1007/s11696-022-02178-0

    Article  CAS  Google Scholar 

  16. E. Tilahun, Y. Adimasu, Y. Dessie, Biosynthesis and optimization of ZnO nanoparticles using Ocimum lamifolium leaf extract for electrochemical sensor and antibacterial activity. ACS Omega 8(30), 27344–27354 (2023). https://doi.org/10.1021/acsomega.3c02709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Velidandi, N.P.P. Pabbathi, S. Dahariya, R.R. Baadhe, Green synthesis of novel Ag–Cu and Ag–Znbimetallic nanoparticles and their in vitro biological, eco-toxicity and catalytic studies. Nano-Struct. Nano-Objects 26, 100687 (2021)

    Article  CAS  Google Scholar 

  18. D.S. Idris, A. Roy, Synthesis of Bimetallic nanoparticles and applications—an updated review. Crystals (2023). https://doi.org/10.3390/cryst13040637

    Article  Google Scholar 

  19. W.P. Wicaksono et al., A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. Nano-Struct. Nano-Objects 24, 100535 (2020). https://doi.org/10.1016/j.nanoso.2020.100535

    Article  CAS  Google Scholar 

  20. D.S. Idris, A. Roy, Biogenic synthesis of Ag–CuO nanoparticles and its antibacterial, antioxidant, and catalytic activity. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02873-9

    Article  Google Scholar 

  21. K.V.G. Ravikumar, S.V. Sudakaran, K. Ravichandran, M. Pulimi, C. Natarajan, A. Mukherjee, Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J. Clean. Prod. 210, 767–776 (2019). https://doi.org/10.1016/j.jclepro.2018.11.108

    Article  CAS  Google Scholar 

  22. A.E. Adebayo et al., Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol. Environ. Eng. 4(1), 13 (2019). https://doi.org/10.1007/s41204-019-0060-8

    Article  CAS  Google Scholar 

  23. S. PrashannaSuvaitha, P. Sridhar, T. Divya, P. Palani, K. Venkatachalam, Bio-waste eggshell membrane assisted synthesis of NiO/ZnO nanocomposite and its characterization: evaluation of antibacterial and antifungal activity”. Inorganica Chim. Acta 536, 120892 (2022). https://doi.org/10.1016/j.ica.2022.120892

    Article  CAS  Google Scholar 

  24. S.R. Dhruval et al., Rapid synthesis of antimicrobial Fe/Cu alloy nanoparticles using Waste Silkworm Cocoon extract for cement mortar applications. Adv. Nat. Sci: Nanosci. Nanotechnol. 11(2), 025006 (2020). https://doi.org/10.1088/2043-6254/ab8790

    Article  CAS  Google Scholar 

  25. J. Zhang, J. Tian, N. Gao, E.S. Gong, G. Xin, C. Liu, B. Li, Assessment of the phytochemical profile and antioxidant activities of eight kiwi berry (Actinidia arguta (Siebold & Zuccarini) Miquel) varieties in China. Food. Sci. Nutr. 9(10), 5616–5625 (2021)

  26. X. He et al., “Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology,” Frontiers in Pharmacology, vol. 10, 2019, [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2019.01236. Accessed 04 Jul 2023

  27. X. Sun et al., Sodium alginate-based nanocomposite films with strong antioxidant and antibacterial properties enhanced by polyphenol-rich kiwi peel extracts bio-reduced silver nanoparticles. Food Packag. Shelf Life 29, 100741 (2021)

    Article  CAS  Google Scholar 

  28. J. Li, Y. Li, H. Wu, S. Naraginti, Y. Wu, Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: bactericidal, anticancer and detoxification properties. Environ. Res. 200, 111433 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. N. Ajmal, K. Saraswat, M.A. Bakht, Y. Riadi, M.J. Ahsan, M. Noushad, Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 12(3), 244–254 (2019)

    Article  CAS  Google Scholar 

  30. E. Gomathi, M. Jayapriya, M. Arulmozhi, Environmental benign synthesis of tin oxide (SnO2) nanoparticles using Actinidia deliciosa (Kiwi) peel extract with enhanced catalytic properties. Inorg. Chem. Commun. 130, 108670 (2021)

    Article  CAS  Google Scholar 

  31. R. Priyadarshi, S. Roy, J.-W. Rhim, Enhanced functionality of green synthesized sulfur nanoparticles using kiwifruit (Actinidia deliciosa) peel polyphenols as capping agents. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00422-

    Article  Google Scholar 

  32. Tanuja, A. Lagashetty, Synthesis and characterization of silver doped zinc oxide nanoparticle from beetle leaf extract- evaluation of antimicrobial activity against human pathogenic bacteria and fungi. IJRASET 10(5), 2703–2716 (2022). https://doi.org/10.22214/ijraset.2022.42914

    Article  Google Scholar 

  33. Green synthesis of Ag, Zn and Cu nanoparticles from aqueous extract of Spondias mombin leaves and evaluation of their antibacterial activity, African J. Clin. Exp. 21(2), 106–113 (2020). https://doi.org/10.4314/AJCEM.V21I2.4

  34. S. Kunwar et al., Bio-fabrication of Cu/Ag/Zn Nanoparticles and their antioxidant and dye degradation activities. Catalysts (2023). https://doi.org/10.3390/catal13050891

    Article  Google Scholar 

  35. M. Pudukudy, Z. Yaakob, Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. J. Clust. Sci. 26(4), 1187–1201 (2015). https://doi.org/10.1007/s10876-014-0806-1

    Article  CAS  Google Scholar 

  36. S.S. Patil et al., Nanostructured microspheres of silver @ zinc oxide: an excellent impeder of bacterial growth and biofilm. J. Nanopart. Res. 16(11), 2717 (2014). https://doi.org/10.1007/s11051-014-2717-3

    Article  CAS  Google Scholar 

  37. D.K. Adeyemi, A.O. Adeluola, M.J. Akinbile, O.O. Johnson, G.A. Ayoola, Green synthesis of Ag, Zn and Cu nanoparticles from aqueous extract of Spondias mombin leaves and evaluation of their antibacterial activity. Afr. J. Clin. Exp. Microbiol. (2020). https://doi.org/10.4314/ajcem.v21i2.4

    Article  Google Scholar 

  38. H. Yousaf, A. Mehmood, K.S. Ahmad, M. Raffi, Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng., C 112, 110901 (2020). https://doi.org/10.1016/j.msec.2020.110901

    Article  CAS  Google Scholar 

  39. N. Jomehzadeh, Z. Koolivand, E. Dahdouh, A. Akbari, A. Zahedi, N. Chamkouri, Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. Mater. Today Commun. 27, 102457 (2021). https://doi.org/10.1016/j.mtcomm.2021.102457

    Article  CAS  Google Scholar 

  40. S.M. Mousavi-Kouhi, A. Beyk-Khormizi, M.S. Amiri, M. Mashreghi, M.E. TaghavizadehYazdi, Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram. Int. 47(15), 21490–21497 (2021). https://doi.org/10.1016/j.ceramint.2021.04.160

    Article  CAS  Google Scholar 

  41. A. Kadam et al., Facile synthesis of Ag–ZnO core–shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. 61, 78–86 (2018). https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  42. A. Jayachandran, T.R. Aswathy, A.S. Nair, Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports 26, 100995 (2021). https://doi.org/10.1016/j.bbrep.2021.100995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Daphedar, T.C. Taranath, Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. Caryologia 71(2), 93–102 (2018). https://doi.org/10.1080/00087114.2018.1437980

    Article  Google Scholar 

  44. A. Velidandi, M. Sarvepalli, N.P.P. Pabbathi, R.R. Baadhe, Biogenic synthesis of novel platinum-palladium bimetallic nanoparticles from aqueous Annona muricata leaf extract for catalytic activity. 3 Biotech 11(8), 385 (2021). https://doi.org/10.1007/s13205-021-02935-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. R. Vijayan, S. Joseph, B. Mathew, Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol. 12(6), 850–856 (2018). https://doi.org/10.1049/iet-nbt.2017.0311

    Article  PubMed  PubMed Central  Google Scholar 

  46. P. Kumar, M. Govindaraju, S. Senthamilselvi, K. Premkumar, Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf. B 103, 658–661 (2013). https://doi.org/10.1016/j.colsurfb.2012.11.022

    Article  CAS  Google Scholar 

  47. S. Nayak, L.C. Goveas, R. Selvaraj, S. Mutalik, S.P. Sajankila, Use of Cyclea peltata mediated gold nanospheres for adsorptive degradation of methyl green dye. Bioresour. Technol. Rep. 20, 101261 (2022). https://doi.org/10.1016/j.biteb.2022.101261

    Article  CAS  Google Scholar 

  48. A.R. Suvarna, A. Shetty, S. Anchan, N. Kabeer, S. Nayak, Cyclea peltata leaf mediated green synthesized bimetallic nanoparticles exhibits methyl green dye degradation capability. BioNanoScience 10(3), 606–617 (2020). https://doi.org/10.1007/s12668-020-00739-9

    Article  Google Scholar 

  49. S. Nayak, S.P. Sajankila, C.V. Rao, A.R. Hegde, S. Mutalik, Biogenic synthesis of silver nanoparticles using Jatropha curcas seed cake extract and characterization: evaluation of its antibacterial activity. Energy Sour. Part A: Recovery, Util. Environ. Eff. 43(24), 3415–3423 (2021). https://doi.org/10.1080/15567036.2019.1632394

    Article  CAS  Google Scholar 

  50. S. Zhang, L. Lin, X. Huang, Y.-G. Lu, D.-L. Zheng, Y. Feng, Antimicrobial properties of metal nanoparticles and their oxide materials and their applications in oral biology. J. Nanomater. 2022, e2063265 (2022). https://doi.org/10.1155/2022/2063265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Small Group Research Project under grant number (RGP1/71/44).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AR planned the overall content of the paper. DSI perform all the experimentation work. AR and DSI wrote the manuscript. AS, SA, KC and NFQ review the manuscript and provide suggestions to improve it. All the authors approved the final version.

Corresponding author

Correspondence to Arpita Roy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, D.S., Roy, A., Subramanian, A. et al. Bio-fabrication of Silver–Zinc Bimetallic Nanoparticles and Its Antibacterial and Dye Degradation Activity. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02936-x

Keywords

Navigation