Skip to main content
Log in

Multi-metal Nanozyme Properties for Colorimetric Peroxidase Reaction: Overview of an Applicable Method Validation for H2O2 Detection

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Displacement of enzyme mimic nanomaterials has been developed due to disadvantages of natural enzymes. Peroxidase reaction could be used for H2O2 colorimetric evaluation in different media. We aim to develop a new method based on the best catalytic activity of metal Nanozyms. A method for H2O2 detection was carried out by TMB peroxidation of metal nanozymes. In this way peroxidase activity of Ag-nano zeolite Y, Cu-nano zeolite Y, Zn-nano zeolite Y and Ag, Cu, Zn-nano zeolite Y was evaluated by Central Composite Design. Total of 28.42% from three metals was exchanged in multi metal nano zeolite Y (mMy) with higher peroxidase- like activity. Nanozyme Km and Vm were evaluated 0.076 and 8.76 × 108, respectively which produced fast and sensitive catalytic reaction. H2O2 method detection carried out by LOD level of 0.12 ppm, and recovery parameters of 99%, in the linear range of 0.5–50 ppm. The mMy nanozyme was validated for H2O2 colorimetric detection. In conclusion an applicable way as a fast, sensitive, accurate and reproducible method has been suggested for occupational exposure monitoring. Performance of validated method is higher than international OSHAVI-6 method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Horseradish peroxidase.

References

  1. B. Peng, J. Xu, M. Fan, Y. Guo, Y. Ma, M. Zhou et al., Smartphone colorimetric determination of hydrogen peroxide in real samples based on B, N, and S co-doped carbon dots probe. Anal. Bioanal. Chem. 412(4), 861–870 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. X. Zhu, Y. Xue, S. Han, W. Chen, M. Fu, Y. Gao et al., V2O5-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H2O2 and glutathione. Appl. Clay Sci. 195, 105718 (2020)

    Article  CAS  Google Scholar 

  3. F. Qiao, L. Chen, X. Li, L. Li, S.J.S. Ai, A.B. Chemical, Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens. Actuators, B Chem. 193, 255–262 (2014)

    Article  CAS  Google Scholar 

  4. B. Maojuan, X. Chengcheng, H. Xuanye, L. Yanan, Jun WJJoN, Nanotechnology. Peroxidase mimic activities of copper selenide (CuSe) nanoplates for sensing H2O2 and L-cysteine. J. Nanosci. Nanotechnol. 20(9), 5369–5375 (2020)

    Article  PubMed  Google Scholar 

  5. P. Saha, A. Maharajan, P.K. Dikshit, B.S. Kim, Rapid and reusable detection of hydrogen peroxide using polyurethane scaffold incorporated with cerium oxide nanoparticles. Korean J. Chem. Eng. 36(12), 2143–2152 (2019)

    Article  CAS  Google Scholar 

  6. H. Liu, L. Zhu, H. Ma, J. Wen, H. Xu, Y. Qiu et al., Copper (II)-coated Fe3O4 nanoparticles as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Microchim. Acta 186(8), 1–9 (2019)

    Article  ADS  Google Scholar 

  7. Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang, Y. Huang et al., Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng, J. Yin et al., Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. J. Yao, Y. Cheng, M. Zhou, S. Zhao, S. Lin, X. Wang et al., ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci 9(11), 2927–2933 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@ Pt nanorods as nanozyme probe. Int. J. Nanomed. (2018). https://doi.org/10.2147/IJN.S171429

    Article  Google Scholar 

  11. F. Ratto, P. Matteini, F. Rossi, R. Pini, Size and shape control in the overgrowth of gold nanorods. J. Nanopart. Res. 12, 2029–2036 (2010)

    Article  CAS  ADS  Google Scholar 

  12. Y. Li, X. Jian, S. Zhou, Y. Lu, C. Zhao, Z. Gao et al., Protein shell-encapsulated Pt clusters as continuous O2-supplied biocoats for photodynamic therapy in hypoxic cancer cells. ACS Appl. Mater. Interfaces 11(19), 17215–17225 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. J. Ali, N. Ali, L. Wang, H. Waseem, G. Pan, Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159, 18–25 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. T.K. Sau, A.L. Rogach, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22(16), 1781–1804 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. W. He, X. Han, H. Jia, J. Cai, Y. Zhou, Z. Zheng, AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7(1), 40103 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Q. Wang, L. Zhang, C. Shang, Z. Zhang, S.J.C.C. Dong, Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016)

    Article  CAS  Google Scholar 

  17. V. Mariyappan, M. Keerthi, S.-M. Chen, G. Boopathy, Facile synthesis of α-Sm2S3/MoS2 bimetallic sulfide as a high-performance electrochemical sensor for the detection of antineoplastic drug 5-fluorouracil in a biological samples. J. Electrochem. Soc. 167(11), 117506 (2020)

    Article  CAS  ADS  Google Scholar 

  18. I. Taurino, G. Sanzò, R. Antiochia, C. Tortolini, F. Mazzei, G. Favero et al., Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC, Trends Anal. Chem. 79, 151–159 (2016)

    Article  CAS  Google Scholar 

  19. W. Qin, L. Su, C. Yang, Y. Ma, H. Zhang, X. Chen, Chemistry f Colorimetric detection of sulfite in foods by a TMB–O2–CO3O4 nanoparticles detection system. J. Agric. Food Chem 62(25), 5827–5834 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. J. Mu, X. Zhao, J. Li, E.-C. Yang, X.-J. Zhao, Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 4(31), 5217–5221 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Han, X. Wang, X. Liu, Y. Zhang, S. Cai, C. Qi et al., MoO3− x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J. Colloid and Interface Sci. 539, 575–584 (2019)

    Article  CAS  ADS  Google Scholar 

  22. X. Ai, L. Wu, M. Zhang, X. Hou, L. Yang, C. Zheng, Chemistry f. Analytical method for the determination of trace toxic elements in milk based on combining Fe3O4 nanoparticles accelerated UV fenton-like digestion and solid phase extraction. J. Agric. Food Chem. 62(34), 8586–8593 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. F.F. Peng, Y. Zhang, N. Gu, Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chinese Chem. Lett. 19(6), 730–733 (2008)

    Article  CAS  Google Scholar 

  24. K. Zhang, W. Zuo, Z. Wang, J. Liu, T. Li, B. Wang, Z. Yang, A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RCS Adv. (2015). https://doi.org/10.1039/C4RA15675G

    Article  Google Scholar 

  25. H.-P. Feng, L. Tang, G.-m Zeng, Y. Zhou, Y.-C. Deng, X. Ren et al., Core-shell nanomaterials: applications in energy storage and conversion. Adv. Colloid Interface Sci. 267, 26–46 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. A. Ángeles-Pascual, J. Piñón-Hernández, M. Estevez-González, U. Pal, S. Velumani, R. Pérez, R.J.M.C. Esparza, Structure, magnetic and cytotoxic behaviour of solvothermally grown Fe3O4@ Au core-shell nanoparticles. Mater. Charact. 142, 237–244 (2018)

    Article  Google Scholar 

  27. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He et al., Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. A Eur. J. 16(21), 6243–6250 (2010)

    Article  CAS  Google Scholar 

  28. J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam, H.H. Kung, P.C.J.S. Stair, Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition. Eur. MPC 335(6073), 1205–1208 (2012)

    CAS  Google Scholar 

  29. Q. Liu, A. Zhang, R. Wang, Q. Zhang, D.J.N. Cui, A review on metal-and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 1–53 (2021)

    Article  ADS  Google Scholar 

  30. S. Rauf, N. Ali, Z. Tayyab, M.Y. Shah, C.P. Yang, J. Hu et al., Ionic liquid coated zerovalent manganese nanoparticles with stabilized and enhanced peroxidase-like catalytic activity for colorimetric detection of hydrogen peroxide. Mater. Res. Exp. 7(3), 035018 (2020)

    Article  CAS  Google Scholar 

  31. L. Alvarado-Ramírez, M. Rostro-Alanis, J. Rodríguez-Rodríguez, J.E. Sosa-Hernández, E.M. Melchor-Martínez, H.M. Iqbal, R.J.B. Parra-Saldívar, Enzyme (single and multiple) and nanozyme biosensors: recent developments and their novel applications in the water-food-health nexus. Biosensors 11(11), 410 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Am. Chem. Soc. 52(8), 2190–2200 (2019)

    CAS  Google Scholar 

  33. A.H. Sharifnezhad, K. Dashtian, F. Amourizi, R. Zare-Dorabei, Development of peptide impregnated V/Fe bimetal Prussian blue analogue as Robust nanozyme for colorimetric fish freshness assessment. Anal. Chimica Acta. 1237, 340555 (2023)

    Article  CAS  Google Scholar 

  34. Z. Wang, P. Ju, Y. Zhang, F. Jiang, H. Ding, C.J.M.A. Sun, CoMoO4 nanobelts as efficient peroxidase mimics for the colorimetric determination of H2O2. Microchim. Acta 187(8), 1–14 (2020)

    Article  ADS  Google Scholar 

  35. G. Singh, A. Kushwaha, M. Sharma, Compounds Intriguing peroxidase-mimic for H2O2 and glucose sensing: a synergistic Ce2 (MoO4) 3/rGO nanocomposites. J. Alloys Compd. 825, 154134 (2020)

    Article  CAS  Google Scholar 

  36. V.P. Pandey, M. Awasthi, S. Singh, S. Tiwari, U.N. Dwivedi, A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 6(1), 308 (2017)

    Article  Google Scholar 

  37. H.Y. Shin, T.J. Park, M. Kim, Recent research trends and future prospects in nanozymes. J. Nanomaterials. (2015). https://doi.org/10.1155/2015/756278

    Article  Google Scholar 

  38. J.E. Giaretta, H. Duan, F. Oveissi, S. Farajikhah, F. Dehghani, S. Naficy, Interfaces flexible sensors for hydrogen peroxide detection: a critical review. ACS Appl. Mater. Interfaces 14(18), 20491–20505 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Pratsinis, G.A. Kelesidis, S. Zuercher, F. Krumeich, S. Bolisetty, R. Mezzenga et al., Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 11(12), 12210–12218 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. J. Wu, Y. Wu, L. Lu, D. Zhang, X. Wang, Single-atom Au catalyst loaded on CeO2: a novel single-atom nanozyme electrochemical H2O2 sensor. Talanta Open 4, 100075 (2021)

    Article  Google Scholar 

  41. W. Zhang, W. Liu, P. Li, F. Huang, H. Wang, B. Tang, Rapid-response fluorescent probe for hydrogen peroxide in living cells based on increased polarity of C-B bonds. Anal. Chem. 87(19), 9825–9828 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. A.S. Ivanova, A.D. Merkuleva, S.V. Andreev, K. Sakharov, Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 283, 431–436 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. A. Swaidan, A. Addad, J.-F. Tahon, A. Barras, J. Toufaily, T. Hamieh et al., Ultrasmall CuS-BSA-Cu3 (PO4) 2 nanozyme for highly efficient colorimetric sensing of H2O2 and glucose in contact lens care solutions and human serum. Anal. Chim. Acta 1109, 78–89 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. Z. Ahmadzadeh, M. Ranjbar, Plasmonic MoO3-x nanosheets by anodic oxidation of molybdenum for colorimetric sensing of hydrogen peroxide. Anal. Chim. Acta 1198, 339529 (2022)

    Article  CAS  PubMed  Google Scholar 

  45. F. Zarif, S. Rauf, S. Khurshid, N. Muhammad, A. Hayat, A. Rahim et al., Effect of pyridinium based ionic liquid on the sensing property of Ni0 nanoparticle for the colorimetric detection of hydrogen peroxide. J. Molecular Struct. 1219, 128620 (2020)

    Article  CAS  Google Scholar 

  46. V.M. Aroutiounian, Hydrogen peroxide semiconductor sensors. J. Contemp. Phys. 56(4), 332–351 (2021)

    Article  CAS  Google Scholar 

  47. F. Zarif, S. Khurshid, N. Muhammad, M. Zahid Qureshi, N.S.J.C. Shah, Colorimetric sensing of hydrogen peroxide using ionic-liquid-sensitized zero-valent copper nanoparticle (nZVCu). Chem. Eur. 5(20), 6066–6074 (2020)

    CAS  Google Scholar 

  48. N. Mucci, S. Dugheri, A. Bonari, A. Farioli, V. Rapisarda, G. Garzaro et al., Health risk assessment related to hydrogen peroxide presence in the workplace atmosphere–Analytical methods evaluation for an innovative monitoring protocol. Int. J. Occup. Med. Environ. Health (2020). https://doi.org/10.13075/ijomeh.1896.01508

    Article  PubMed  Google Scholar 

  49. V.M.J.S. Aroutiounian, Transducers properties of hydrogen peroxide sensors made from nanocrystalline materials. Sens. Transducers J. 223(7), 9–21 (2018)

    CAS  Google Scholar 

  50. Z. Moradpour, M. Helmi Kohnehshahri, M. Vahabi Shekarloo, V. Jalili, R.J.C. Zendehdel, P. Science, Peroxidase-like reaction by a synergistic inorganic catalyst colloid: a new method for hydrogen peroxide detecting in air samples. Colloid Polym. Sci. 299(10), 1567–1575 (2021)

    Article  CAS  Google Scholar 

  51. Q. Pan, Y. Kong, K. Chen, M. Mao, X. Wan, X. She et al., A colorimetric assay for the detection of glucose and H2O2 based on Cu-Ag/g-C3N4/ZIF hybrids with superior peroxidase mimetic activity. Molecules 25(19), 4432 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T. Cheng, X. Li, P. Huang, H. Wang, M. Wang, W.J.M.A. Yang, Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Microchim. Acta 186(2), 1–8 (2019)

    Article  CAS  ADS  Google Scholar 

  53. N.H. Abdul Halim, Y.H. Lee, R.S.P.M. Marugan, U.J.B. Hashim, Mediatorless impedance studies with titanium dioxide conjugated gold nanoparticles for hydrogen peroxide detection. Biosensors 7(3), 38 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  54. A. Ahmed, P. John, M.H. Nawaz, A. Hayat, M. Nasir, Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide. ACS Appl. Nano Mater.x 2(8), 5156–5168 (2019)

    Article  CAS  Google Scholar 

  55. O. Adeniyi, S. Sicwetsha, P. Mashazi, Interfaces Nanomagnet-silica nanoparticles decorated with Au@ Pd for enhanced peroxidase-like activity and colorimetric glucose sensing. ACS Appl. Mater. Interfaces 12(2), 1973–1987 (2019)

    Article  Google Scholar 

  56. Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Confinement in a zeolite and zeolite catalysis. Acc. Chem. Res 54(13), 2894–2904 (2021)

    Article  CAS  PubMed  Google Scholar 

  57. X. Cheng, L. Huang, X. Yang, A.A. Elzatahry, A. Alghamdi, Y. Deng, Science i. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: a synergistic CeO2/Zeolite Y nanocomposite. J. Colloid and Interface Sci. 535, 425–435 (2019)

    Article  CAS  ADS  Google Scholar 

  58. H. Derakhshankhah, S. Jafari, S. Sarvari, E. Barzegari, F. Moakedi, M. Ghorbani et al., Biomedical applications of zeolitic nanoparticles, with an emphasis on medical interventions. Int. J. Nanomed. 15, 363 (2020)

    Article  CAS  Google Scholar 

  59. S. Demirci, Z. Ustaoğlu, G.A. Yılmazer, F. Sahin, N. Baç, Biotechnology. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 172, 1652–1662 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. F. Morante-Carballo, N. Montalván-Burbano, P. Carrión-Mero, N.J.S. Espinoza-Santos, Cation exchange of natural zeolites: worldwide research. Sustainability 13(14), 7751 (2021)

    Article  CAS  Google Scholar 

  61. L. Guczi, D. Bazin, Structure and selectivity of metal catalysts: revisiting bimetallic zeolite systems. Appl. Catal. A: General 188(1–2), 163–174 (1999)

    Article  CAS  Google Scholar 

  62. H. Ramezani, S.N. Azizi, S.R.J.S. Hosseini, A.B. Chemical, NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of H2O2 sensor. Sens. Actuators, B Chem. 248, 571–579 (2017)

    Article  CAS  Google Scholar 

  63. W. Yang, J. Li, J. Yang, Y. Liu, Z. Xu, X. Sun et al., Biomass-derived hierarchically porous CoFe-LDH/CeO2 hybrid with peroxidase-like activity for colorimetric sensing of H2O2 and glucose. J. Alloys Compd. 815, 152276 (2020)

    Article  CAS  Google Scholar 

  64. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Y.-l Dong, H.-G. Zhang, Z.U. Rahman, L. Su, X.-J. Chen, J. Hu, X.-G. Chen, Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13), 3969–3976 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  66. L. Sun, Y. Ding, Y. Jiang, Q.J.S. Liu, A.B. Chemical, Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators, B Chem. 239, 848–856 (2017)

    Article  CAS  Google Scholar 

  67. X. Zhu, P. Song, S. Hou, H. Zhao, Y. Gao, T. Wu, Q. Liu, Synthesis of Ag nanoparticles supported on magnetic halloysite nanozyme for detection of H2O2 in milk and serum. Appl. Clay Sci. 242, 107022 (2023)

    Article  CAS  Google Scholar 

  68. Y. Wang, X. Liu, M. Wang, X. Wang, W. Ma, J.J.S. Li, A.B. Chemical, Facile synthesis of CDs@ ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sens. Actuators B: Chem. 329, 129115 (2021)

    Article  CAS  Google Scholar 

  69. Y. Mirzaei, A. Gholami, A. Sheini, M.M. Bordbar, An origami-based colorimetric sensor for detection of hydrogen peroxide and glucose using sericin capped silver nanoparticles. Sci. Rep. 13(1), 7064 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. F. Xia, Q. Shi, Z.J.D.T. Nan, Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH. Dalton Trans. 49(36), 12780–12792 (2020)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Ding, H. Liu, L.-N. Gao, M. Fu, X. Luo, X. Zhang et al., Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. J. Alloy. Compd. 785, 1189–1197 (2019)

    Article  CAS  Google Scholar 

  72. L. Zhang, M. Chen, Y. Jiang, M. Chen, Y. Ding, Q.J.S. Liu, A.B. Chemical, A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators, B Chem. 239, 28–35 (2017)

    Article  CAS  Google Scholar 

  73. T. Zhan, J. Kang, X. Li, L. Pan, G. Li, W.J.S. Hou, A.B. Chemical, NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2. Sens. Actuators, B Chem. 255, 2635–2642 (2018)

    Article  CAS  Google Scholar 

  74. C. Cui, Q. Wang, Q. Liu, X. Deng, T. Liu, D. Li et al., Porphyrin-based porous organic framework: an efficient and stable peroxidase-mimicking nanozyme for detection of H2O2 and evaluation of antioxidant. Sens. Actuators B Chem. 277, 86–94 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

FR and RZ and SFD wrote the main manuscript text and DP with FR prepared all figures and tables.

Corresponding author

Correspondence to Rezvan Zendehdel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravannakhjavani, F., Dehghan, S.F., Panahi, D. et al. Multi-metal Nanozyme Properties for Colorimetric Peroxidase Reaction: Overview of an Applicable Method Validation for H2O2 Detection. J Inorg Organomet Polym 34, 818–826 (2024). https://doi.org/10.1007/s10904-023-02847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02847-x

Keywords

Navigation