Skip to main content
Log in

Size and shape control in the overgrowth of gold nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on a new sustainable approach to manipulate the optical behaviour and geometrical properties of gold nanorods in aqueous solutions by fine control of their overgrowth. In our approach, the overgrowth is realized by modulation of the reduction of the gold ions which are left as Au1+ after the primary step of the synthesis (typically as much as ~80% of the gold ions available in the growth solution). The progress of the reduction requires the gradual addition of ascorbic acid, which transforms the Au1+ into Au0 and may be performed in the original growth solution with no need for any further manipulation. By control of the total amount and rate of administration of the ascorbic acid, we prove the possibility to realize a systematic modulation of the average lengths, diameters, shapes (rod or dog-bone like), and light extinction of the nanoparticles. A slow overgrowth leads to a gradual enlargement of the lengths and diameters at almost constant shape. In contrast, a faster overgrowth results into a more complex modification of the overall shape of the gold nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NIR:

Near infrared

AA:

Ascorbic acid

CTAB:

Cetrimonium bromide

TEM:

Transmission electron microscope

References

  • Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 44:6285–6295

    Article  CAS  PubMed  ADS  Google Scholar 

  • Alekseeva AV, Bogatyrev VA, Khlebtsov BN, Mel’nikov AG, Dykman LA, Khlebtsov NG (2006) Gold nanorods: synthesis and optical properties. Colloid J 68:661–678

    Article  CAS  Google Scholar 

  • Chamberland DL, Agarwal A, Kotov N, Fowlkes JB, Carson PL, Wang X (2008) Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotechnology 19:095101

    Article  ADS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  PubMed  ADS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  • Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945

    Article  CAS  PubMed  ADS  Google Scholar 

  • Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7:1914–1918

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672

    Article  CAS  Google Scholar 

  • Harris N, Ford MJ, Mulvaney P, Cortie MB (2008) Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells. Gold Bull 41:5–14

    CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  PubMed  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  PubMed  Google Scholar 

  • Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  PubMed  Google Scholar 

  • Jiang XC, Brioude A, Pileni MP (2006) Gold nanorods: limitations on their synthesis and optical properties. Colloid Surf A 277:201–206

    Article  CAS  Google Scholar 

  • Kalele SA, Tiwari NR, Gosavi SW, Kulkarni SK (2007) Plasmon-assisted photonics at the nanoscale. J Nanophoton 1:012501

    Article  Google Scholar 

  • Keul HA, Möller M, Bockstaller MR (2007) Structural evolution of gold nanorods during controlled secondary growth. Langmuir 23:10307–10315

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Huang SW, Ashkenazi S, O’Donnell M, Agarwal A, Kotov NA, Denny MF, Kaplan MJ (2007) Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett 90:223901

    Article  ADS  Google Scholar 

  • Lapotko DO, Lukianova E, Oraevsky AA (2006) Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg Med 38:631–642

    Article  PubMed  Google Scholar 

  • Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CRC, Wu YN, Shieh DB (2007) Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54:1642–1647

    Article  PubMed  Google Scholar 

  • Link S, El-Sayed MA (2001) Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys 114:2362–2368

    Article  CAS  ADS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686

    Article  CAS  PubMed  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Nikoobakht B, Wang J, El-Sayed MA (2002) Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett 366:17–23

    Article  CAS  ADS  Google Scholar 

  • Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 18:1490–1497

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Cui D, Xu P, Li Q, Huang T, He R, Gao F (2007a) Study on interaction between gold nanorod and bovine serum albumin. Colloid Surf A 295:217–222

    Article  CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007b) Size dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Park K (2006) Synthesis, characterization, and self-assembly of size tunable gold nanorods. Dissertation, Georgia Institute of Technology

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Petrova H, Pérez-Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzán LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821

    Article  CAS  PubMed  Google Scholar 

  • Pissuwan D, Valenzuela SM, Killingsworth MC, Xu X, Cortie MB (2007) Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9:1109–1124

    Article  CAS  Google Scholar 

  • Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R (2009) Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 5:143–151

    CAS  PubMed  Google Scholar 

  • Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  PubMed  Google Scholar 

  • Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649

    Article  CAS  PubMed  Google Scholar 

  • Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy CJ (2007) Using gold nanorods to probe cell-induced collagen deformation. Nano Lett 7:116–119

    Article  CAS  PubMed  ADS  Google Scholar 

  • Takahashi H, Niidome T, Kawano T, Yamada S, Niidome Y (2008) Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J Nanopart Res 10:221–228

    Article  CAS  Google Scholar 

  • Tiwari N, Kalele S, Kulkarni SK (2007) Modulation of optical properties of gold nanorods on addition of KOH. Plasmonics 2:231–236

    Article  CAS  Google Scholar 

  • Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci 102:15752–15756

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yu C, Nakshatri H, Irudayaraj J (2007) Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett 7:2300–2306

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zharov VP, Letfullin RR, Galitovskaya EN (2005) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D 38:2571–2581

    Article  CAS  ADS  Google Scholar 

  • Zharov VP, Galanzha EI, Shashkov EV, Kim JW, Khlebtsov NG, Tuchin VV (2007) Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 12:051503

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratto, F., Matteini, P., Rossi, F. et al. Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 12, 2029–2036 (2010). https://doi.org/10.1007/s11051-009-9712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9712-0

Keywords

Navigation