Skip to main content
Log in

Dielectric Properties and Corona Resistance of Si–Mg–B/EP Nano-composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In order to meet the increasing requirements of epoxy resin matrix materials for the electrical and electronics industry, this paper presents the design and synthesis of Si–Mg–B oxides using Mg, Si and B organic monomers, and preparation of Si–Mg–B/EP nanocomposites by ultrasonic dispersion and thermal curing. Mainly study the effect of composite oxide introduction on the dielectric properties of epoxy resin composites. With an increase in doping amount, the Si–Mg–B/EP nanocomposites show an increase in dielectric constant under working frequency test conditions; a decrease in dielectric loss followed by an increase, and the lowest value of 0.00238 is obtained at a doping amount of 8 wt%. The volume resistivity initially increases and then decreases, with the maximum value of 5.64 × 1016 Ω cm obtained at a doping amount of 8 wt%. Furthermore, the corona resistance life of Si–Mg–B/EP nanocomposites increases, with a value of 401.8 min obtained at a doping amount of 8 wt%, which is 4.65 times that of pure EP. And the morphology near the breakdown point of corona breakdown was analyzed. These results suggest that Si–Mg–B oxide is effective in improving the dielectric loss and corona resistance of epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Y. Kerong, C. Weijiang, Z. Yushun, D. Lijian, D. Bin, Z. Song, Y. Wei, Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond. Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2021.109178

    Article  Google Scholar 

  2. Z. Lei, R. Men, F. Wang, Y. Li, J. Song, T. Shahsavarian, C. Li, D. Fabiani, Surface modified nano-SiO2 enhances dielectric properties of stator coil insulation for HV motors. IEEE Trans. Dielectr. Electr. Insul. 27(3), 1029–1037 (2020). https://doi.org/10.1109/tdei.2020.008736

    Article  CAS  Google Scholar 

  3. Y. Qian, Y. Tao, Y. Li, J. Hao, C. Xu, W. Yan, Q. Jiang, Y. Luo, J. Yang, High performance epoxy resin with efficient electromagnetic wave absorption and heat dissipation properties for electron packaging by modification of 3D MDCF@hBN. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.136033

    Article  Google Scholar 

  4. Y. Wang, C. Feng, Y. Luo, The development of electrical tree discharge in epoxy resin impregnated paper insulation. IEEE Access 8, 69522–69531 (2020). https://doi.org/10.1109/access.2020.2986482

    Article  Google Scholar 

  5. C. Amit, D. Umesh Kumar, K. Neelam, M. Shivali, R. Deepshikha, S.A.R. Hashmi, J. Deepak, Effect of graded dispersion of SiC particles on dielectric behavior of SiC/epoxy composite. Silicon 15(2), 913–923 (2022). https://doi.org/10.1007/s12633-022-02057-z

    Article  CAS  Google Scholar 

  6. L. Yuanyuan, Y. Yang, Y. Shuangshuang, L. Zhipeng, G. Meiqing, Mitigation of electrical treeing at high temperature in nano-SiO2 doped epoxy resin. High Volt. (2023). https://doi.org/10.1049/hve2.12321

    Article  Google Scholar 

  7. T. Heng, W. Yelin, T. Jingjing, X. Yonghao, C. Yuecong, X. Kun, F. Yujun, The effect of ZnO particle size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-epoxy composites. J. Mater. Sci. Mater. Electron. 33(28), 22388–22399 (2022). https://doi.org/10.1007/s10854-022-09016-9

    Article  CAS  Google Scholar 

  8. Y. Wang, L. Zhu, J. Zhou, B. Jia, Y. Jiang, J. Wang, M. Wang, Y. Cheng, K. Wu, Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core–shell particles. Polym. Bull. 76(8), 3957–3970 (2018). https://doi.org/10.1007/s00289-018-2581-x

    Article  CAS  Google Scholar 

  9. D.-H. Kuo, C.-C. Lai, T.-Y. Su, Dielectric behavior of Nb2O5-doped TiO2/epoxy thick films. Ceram. Int. 30(8), 2177–2181 (2004). https://doi.org/10.1016/j.ceramint.2004.01.001

    Article  CAS  Google Scholar 

  10. J. Naveen, M.S. Babu, R. Sarathi, Impact of MgO nanofiller-addition on electrical and mechanical properties of glass fiber reinforced epoxy nanocomposites. J. Polym. Res. 28(10), 377 (2021). https://doi.org/10.1007/s10965-021-02746-0

    Article  CAS  Google Scholar 

  11. Z. An, F. Liu, Y. Tang, F. Zheng, Y. Zhang, Resistance of surface fluorinated epoxy resin to corona discharge in SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 23(6), 3659–3667 (2016). https://doi.org/10.1109/tdei.2016.006036

    Article  CAS  Google Scholar 

  12. Z. An, H. Xiao, F. Liu, F. Zheng, Q. Lei, Y. Zhang, Improved resistance of epoxy resin to corona discharge by direct fluorination. IEEE Trans. Dielectr. Electr. Insul. 23(4), 2278–2287 (2016). https://doi.org/10.1109/tdei.2016.7556504

    Article  CAS  Google Scholar 

  13. W. Zhao, H. Chen, Y. Fan, W. Cui, Effect of size and content of SiO2 nanoparticle on corona resistance of silicon–boron composite oxide/SiO2/epoxy composite. J. Inorg. Organomet. Polym. 30(11), 4753–4763 (2020). https://doi.org/10.1007/s10904-020-01733-0

    Article  CAS  Google Scholar 

  14. W. Zhao, Y. Fan, H. Chen, Dielectric properties and corona resistance of Si-B/epoxy nano-composites. J. Mater. Sci. Mater. Electr. 30(17), 16298–16307 (2019). https://doi.org/10.1007/s10854-019-02000-w

    Article  CAS  Google Scholar 

  15. T. Heid, M. Fréchette, E. David, Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans. Dielectr. Electr. Insul. 22(3), 1594–1604 (2015). https://doi.org/10.1109/tdei.2015.7116355

    Article  CAS  Google Scholar 

  16. W. Zhao, H. Chen, Y. Fan, W. Cui, The influences of different size SiO2 nanoparticles on dielectric properties and corona resistance of epoxy composites. Polym. Adv. Technol. 31(12), 3070–3078 (2020). https://doi.org/10.1002/pat.5032

    Article  CAS  Google Scholar 

  17. B. Sharmila, N. George, S. Sasi, J.V. Antony, J. Chandra, V. Raman, D. Nambath Purushothaman, A comprehensive investigation of dielectric properties of epoxy composites containing conducting fillers: fluffy carbon black and various types of reduced graphene oxide. Polym. Adv. Technol. 33(10), 3151–3162 (2022). https://doi.org/10.1002/pat.5767

    Article  CAS  Google Scholar 

  18. R. Wang, C. Xie, B. Gou, H. Xu, S. Luo, J. Zhou, L. Zeng, Preparation and properties of carbon-based epoxy nanocomposites: dynamic mechanical, dielectric, and thermal properties. Polym. Compos. 41(12), 4974–4982 (2020). https://doi.org/10.1002/pc.25767

    Article  CAS  Google Scholar 

  19. Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang, Z. Jia, J. Mater. Sci. Mater. Electr. 28(23), 17871–17880 (2017). https://doi.org/10.1007/s10854-017-7728-2

    Article  CAS  Google Scholar 

  20. C. Yeung, A. Vaughan, On the Effect of nanoparticle surface chemistry on the electrical characteristics of epoxy-based nanocomposites. Polymers (Basel) 8(4), 126 (2016). https://doi.org/10.3390/polym8040126

    Article  CAS  PubMed  Google Scholar 

  21. Y. Min, Z. Tongtong, L. Jie et al., Enhancing toughness, flame retardant, hydrophobic and dielectric properties of epoxy resin by incorporating multifunctional additive containing phosphorus/silicon. Mater. Des. 2, 89 (2023). https://doi.org/10.1016/j.matdes.2022.111529

    Article  CAS  Google Scholar 

  22. Q. Jianyu, Z. Hanpeng, Q. Zhaolu et al., Effect of polyhedral oligomeric silsesquioxanes with different structures on dielectric and mechanical properties of epoxy resin. Polym. Compos. (2021). https://doi.org/10.1002/pc.26070

    Article  Google Scholar 

  23. R. Wang, C. Xie, S. Luo, B. Gou, H. Xu, L. Zeng, The influence mechanism of nanoparticles on the dielectric properties of epoxy resin. RSC Adv. 9(34), 19648–19656 (2019). https://doi.org/10.1039/c9ra02889g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. A. Katiyar, P. Dhar, T. Nandi, L.S. Maganti, S.K. Das, Enhanced breakdown performance of anatase and Rutile titania based nano-oils. IEEE Trans. Dielectr. Electr. Insul. 23(6), 3494–3503 (2016). https://doi.org/10.1109/tdei.2016.005886

    Article  CAS  Google Scholar 

  25. Z. Wang, Y. Cheng, H. Wang, M. Yang, Y. Shao, X. Chen, T. Tanaka, Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength. J. Mater. Sci. 52(8), 4299–4308 (2017). https://doi.org/10.1007/s10853-016-0511-6

    Article  CAS  ADS  Google Scholar 

  26. B. Costello, J.A. Davis, Breakdown field strength variations and energydensity limits of nanoparticle composite materials. IEEE Trans. Nanotechnol. (2020). https://doi.org/10.1109/tnano.2020.3037897

    Article  Google Scholar 

  27. M.F.-C. Sebastian, L. Zongze, A. Abdullah, P.C. Aaron, P. Junkun, W. Chao, R.L. Jeffrey, Y. Omer, S. Stuti, S. Gregory, C. Yang, Synthetically tunable polymers, free volume element size distributions, and dielectric breakdown field strengths. Michael Mater. Today (2023). https://doi.org/10.1016/j.mattod.2023.05.010

    Article  Google Scholar 

  28. S. Akram, G. Gao, Y. Liu, J. Zhu, G. Wu, Degradation mechanism of A12O3 nano filled polyimide film due to surface discharge under square impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 22(6), 3341–3349 (2015). https://doi.org/10.1109/tdei.2015.005059

    Article  CAS  Google Scholar 

  29. J.-W. Zha, H.-T. Song, Z.-M. Dang, C.-Y. Shi, J. Bai, Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3025408

    Article  Google Scholar 

  30. H. Chen, L. Li, W. Zhao, X.R. Zhang, L. Weng, Corona resistance mechanism of nano-modified polyimide. Polymers (Basel). (2022). https://doi.org/10.3390/polym14245469

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Foundation for Universities of Heilongjiang Province (LGYC2018JC033).

Funding

Fundamental Research Fundation for Universities of Heilongjiang Province (LGYC2018JC033).

Author information

Authors and Affiliations

Authors

Contributions

YZ: authored the manuscript text, HC, WZ, CL et al.: revised the content of the manuscript and provided theoretical guidance, the chart was modified by JS, ZH, XL, and LW. All authors have reviewed the manuscript.

Corresponding authors

Correspondence to Hao Chen or Changwei Liu.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhou, Y., Zhao, W. et al. Dielectric Properties and Corona Resistance of Si–Mg–B/EP Nano-composites. J Inorg Organomet Polym 34, 546–556 (2024). https://doi.org/10.1007/s10904-023-02822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02822-6

Keywords

Navigation