Skip to main content

Advertisement

Log in

The effect of ZnO particle size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-Epoxy composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, ZnO varistors with different particle sizes were added into the epoxy resin to fabricate ZnO varistor-Epoxy composites. The effect of ZnO filler size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-Epoxy composites was investigated. As the temperature ranges from − 60 to 110 °C, 20 vol% ZnO varistor-Epoxy composites with different ZnO particle sizes represent the glassy state, the glass transition state and rubbery state. When ZnO particle size increases from 70 to 255 μm, the storage modulus of ZnO varistor-Epoxy composites is significantly improved from 1681 MPa to 2755 MPa at room temperature, and the maximum value of damping factor fluctuates between 0.55 and 0.60. As the frequency increases from 0.1 to 20 Hz, both the storage modulus and the maximum value of damping factor are raised. In addition, the coefficient of thermal expansion decreases from 5.06 × 10− 5 K− 1 to 4.45 × 10− 5 K− 1, whereas the filler size has little influence on the glass transition temperature of composites. Besides, both the dielectric constant and dielectric loss in the frequency range from 103 to 106 Hz vary in a small range with the increase of the ZnO filler size. With the increase of frequency, both the dielectric constant and dielectric loss gradually decrease. However, as the temperature increases, the dielectric constant and dielectric loss show an opposite trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data that support the findings of this study are available from the corresponding author [Heng Tian], upon reasonable request.

References

  1. L.G. Virsberg, P.H. Ware, IEEE T Power Syst Pas 86, 1129–1135 (1967)

    Article  Google Scholar 

  2. A. Can-Ortiz, L. Laudebat, Z. Valdez-Nava, S. Diaham, Polymers-Basel 13, 1370 (2021)

    Article  CAS  Google Scholar 

  3. B.X. Du, Z.L. Li, Z.R. Yang, IEEE T Dielect El In 23, 3108–3116 (2016)

    Article  CAS  Google Scholar 

  4. Z.H. Yang, P.H. Hu, S.J. Wang, J.W. Zha, Z.C. Guo, Z.M. Dang, IEEE Trans Dielect Elec Ins 24, 1735–1742 (2017)

    Article  CAS  Google Scholar 

  5. T.T. Wang, X.J. Li, M.Y. Liu, G.C. Li, W. Xiao, S.J. Chen, C.C. Hao, Y.H. Wei, M.L. Fu, Q.Q. Lei, Mater. Res. Express 7, 125302 (2020)

    Article  CAS  Google Scholar 

  6. A. Roberts, IEEE Electr. Insul. Mag 11, 26–31 (1995)

    Article  Google Scholar 

  7. D. Weida, C. Richter, M. Clemens, IEEE Trans Dielect Elec Ins 18, 1262–1267 (2011)

    Article  Google Scholar 

  8. R. Abd-Rahman, A. Haddad, N. Harid, H. Griffiths, IEEE Trans Dielect Elec Ins 19, 705–713 (2012)

    Article  CAS  Google Scholar 

  9. X.L. Zhao, X. Yang, J. Hu, H. Wang, H.Y. Yang, Q. Li, J.L. He, Z.L. Xu, X.X. Li, IEEE Trans Dielect Elec Ins 26, 1253–1260 (2019)

    Article  CAS  Google Scholar 

  10. B.X. Du, H.C. Liang, J. Li, IEEE Trans Dielect Elec Ins 26, 801–809 (2019)

    Article  CAS  Google Scholar 

  11. L. Donzel, F. Greuter, T. Christen, IEEE Electr. Ins. Mag 27, 18–29 (2011)

    Article  Google Scholar 

  12. X.L. Zhao, X. Yang, J. Hu, Q. Li, J.L. He, Compos. Sci. Technol. 175, 151–157 (2019)

    Article  CAS  Google Scholar 

  13. J.Y. Guo, X.L. Wang, Z.D. Jia, J. Wang, C. Chen, Molecules 23, 1–16 (2018)

    Google Scholar 

  14. C.Y. Liu, X.Q. Zheng, P. Peng, IEEE T Plasma Sci 43, 3727–3733 (2015)

    Article  CAS  Google Scholar 

  15. X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, IEEE Trans Dielect Elec Ins 17, 1687–1696 (2010)

    Article  CAS  Google Scholar 

  16. F.Q. Tian, Q.Q. Lei, X. Wang, Y. Wang, IEEE Trans Dielect Elec Ins 19, 763–769 (2012)

    Article  CAS  Google Scholar 

  17. M. Perlman, A. Kumar, R. Coelho, B. Aladenize, IEEE Trans. Elect. Insulation 26, 323–325 (1991)

    Article  Google Scholar 

  18. A.S. Blivi, F. Bedoui, S. Weigand, D. Kondo, Polym. Eng. Sci. 60, 1773–1784 (2020)

    Article  CAS  Google Scholar 

  19. G. Suriati, M. Mariatti, A. Azizan, J. Mater. Sci: Mater. Electron. 22, 56–63 (2011)

    CAS  Google Scholar 

  20. J.J. Tian, Y.C. Cao, H. Tian, Y.H. Xu, G.D. Wang, Y.J. Feng, J. Mater. Sci: Mater. Electron. 32, 13029–13039 (2021)

    CAS  Google Scholar 

  21. P.K. Arya, V. Mathur, D. Patidar, Phase Transit. 90, 695–702 (2017)

    Article  CAS  Google Scholar 

  22. S.K. Esthappan, R. Joseph, Prog Rubber Plast Re 30, 211–219 (2014)

    Google Scholar 

  23. A.R. Shah, M.N. Prabhakar, H.F. Wang, J. Song, Polym Compos. 39, 2420–2430 (2018)

    Article  CAS  Google Scholar 

  24. P. Khoshnoud, A.Z. Nidal, J. Vinyl Addit. Techn 25, 134–143 (2019)

    Article  CAS  Google Scholar 

  25. P. Sabarinathan, K. Rajkumar, V.E. Annamalai, K. Vishal, Polym Compos. 41, 3309–3321 (2020)

    Article  CAS  Google Scholar 

  26. A. Kufel, S. Kuciel. Mater 12, 2557 (2019)

    CAS  Google Scholar 

  27. Y.Z. Tang, P. Zhang, M.X. Zhu, J.C. Li, Y.X. Li, Z.G. Wang, L.S. Huang, Materials 12, 1–12 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Scientific Research Projects of Henan Colleges and Universities (Grant No. 20B430005 and Grant No. 21A510004), the Doctoral Fund Project of Henan Polytechnic University (Grant No. B2020-45 and Grant No. B2019-20), the Fundamental Research Funds for the Universities of Henan Province (Grant No. NSFRF210451), the Henan Province Scientific and Technological Project (Grant No. 222102230026).

Funding

This work was supported by the Key Scientific Research Projects of Henan Colleges and Universities (Grant No. 20B430005 and Grant No. 21A510004), the Doctoral Fund Project of Henan Polytechnic University (Grant No. B2020-45 and Grant No. B2019-20), the Fundamental Research Funds for the Universities of Henan Province (Grant No. NSFRF210451), the Henan Province Scientific and Technological Project (Grant No. 222102230026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HT, JT, and YF. The first draft of the manuscript was written by JT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Heng Tian or Jingjing Tian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Wu, Y., Tian, J. et al. The effect of ZnO particle size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-Epoxy composites. J Mater Sci: Mater Electron 33, 22388–22399 (2022). https://doi.org/10.1007/s10854-022-09016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09016-9

Navigation