Skip to main content
Log in

Effects of Interfacial Interactions and Nanoparticle Agglomeration on the Structural, Thermal, Optical, and Dielectric Properties of Polyethylene/Cr2O3 and Polyethylene/Cr2O3/CNTs Nanocomposites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this report, we have synthesized the binary and ternary phase nanocomposites [(polyethylene (PE)1−X/(Cr2O3)x) and (PE)1−X/(Cr2O3)X/CNTs (where X = 0, 2%, 4%, 6%, 8%, and 10%)] using the melt mixing method and studied the structural, optical, thermal and dielectric properties with an increase in Cr2O3 nanofiller concentration. Our results show an increase in interfacial interactions between Cr2O3 nanofiller and PE matrix with an increase in nanofiller concentration up to X = 6%. After that, the interactions decreased with a further increase in X because of the increase in the size of the Cr2O3 nanoparticle aggregates. Incorporating 2% carbon nanotubes (CNTs) into (PE)1−X/(Cr2O3)X nanocomposites, further decreases the interactions between the Cr2O3 nanofiller and the PE matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.J. Peacock, Handbook of Polyethylene: Structures, Properties, and Applications (Marcel Dekker Inc., Basel, 2000). https://doi.org/10.1201/9781482295467

    Book  Google Scholar 

  2. K. Sreelatha, P. Predeep, Enhanced electrical and optical properties of iodine doped LDPE films. IOP Conf. Ser.: Mater. Sci. Eng. 73, 012012 (2015). https://doi.org/10.1088/1757-899X/73/1/012012

    Article  CAS  Google Scholar 

  3. D. Briassoulis, A. Aristopoulou, M. Bonora, I. Verlodt, Degradation characterisation of agricultural low-density polyethylene films. Biosyst. Eng. 88(2), 131–143 (2004). https://doi.org/10.1016/j.biosystemseng.2004.02.010

    Article  Google Scholar 

  4. S. Jeong, J.M. Kim, S. Cho, C. Baig, Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow. Soft Matter 13, 8644–8650 (2017). https://doi.org/10.1039/C7SM01644A

    Article  CAS  PubMed  Google Scholar 

  5. Y. Wang, X. Zhang, L. Li, J. Gao, Influence of interfacial interaction on the mechanical properties of amorphous PE/MMT nanocomposites influence of interfacial interaction on the mechanical properties of amorphous PE/MMT nanocomposites. AIP Adv. 9, 125201 (2019). https://doi.org/10.1063/1.5123310

    Article  CAS  Google Scholar 

  6. M. Alghdeir, K. Mayya, M. Dib, Characterization of nanosilica/low-density polyethylene nanocomposite materials. J. Nanomater. 8, 4184351 (2019). https://doi.org/10.1155/2019/4184351

    Article  CAS  Google Scholar 

  7. S. Siddique, G.D. Smith, K. Yates, A.K. Mishra, K. Matthews, L.J. Csetenyi, J. Njuguna, Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. J. Polym. Res. 26, 154 (2019). https://doi.org/10.1007/s10965-019-1802-9

    Article  CAS  Google Scholar 

  8. Z. Alsayed, R. Awad, M.S. Badawi, Thermo-mechanical properties of high density polyethylene with zinc oxide as a filler. Iran. Polym. J. (2020). https://doi.org/10.1007/s13726-020-00796-7

    Article  Google Scholar 

  9. Q. Chi, T. Ma, J.D.Y. Cui, Y. Zhang, C. Zhang, S. Xu, X. Wang, Q. Lei, Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci. Rep. 7, 3072 (2017). https://doi.org/10.1038/s41598-017-03273-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M.E. Mahmoud, A.M. El-Khatib, R.M. El-Sharkawy, A.R. Rashad, M.S. Badawi, M.A. Gepreel, Design and testing of high-density polyethylene nanocomposites filled with lead oxide micro- and nano-particles: mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/APP.47812

    Article  Google Scholar 

  11. Z. Wang, P. Priego, M.J. Meziani, K.W.S. Bhattacharya, A. Rao, P. Wanga, Y.-P. Sun, Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Adv. 2, 2507–2513 (2020). https://doi.org/10.1039/D0NA00190B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rafi-ud-din, Q. Xuanhui, L. Ping, L. Zhang, W. Qi, M.Z. Iqbal, M.Y. Rafique, M.H. Farooq, Islam-ud-din, Superior catalytic effects of Nb2O5, TiO2, and Cr2O3 nanoparticles in improving the hydrogen sorption properties of NaAlH4. J. Phys. Chem. C 116(22), 11924–11938 (2012). https://doi.org/10.1021/jp302474c

    Article  CAS  Google Scholar 

  13. K.S. Prashanth, S.S. Mahesh, M.B.N. Prakash, L.M. Munirathnamma, S. Ningaraju, H.B. Ravikumar, R.S. Somashekar, B.M. Nagabhushana, Solution combustion synthesis of Cr2O3 nanoparticles and derived PVA/Cr2O3 nanocomposites-positron annihilation spectroscopic study. Mater. Today: Proc. 3, 3646–3651 (2016). https://doi.org/10.1016/j.matpr.2016.11.008

    Article  Google Scholar 

  14. S. Ye, X. Zeng, F. Tan, Q. Fan, Research on the tribological performance of Cr2O3 filled with bronze-based PTFE composites. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/APP.41117

    Article  Google Scholar 

  15. B. Chen, W. Ya, C. Li, L. Fu, X. Liu, Y. Zhu, L. Zhang, Y. Wu, A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Adv. 7, 25019 (2017). https://doi.org/10.1039/c7ra01954h

    Article  CAS  Google Scholar 

  16. G. Zhao, T. Wen, J. Zhang, J. Li, H. Dong, X. Wang, Y. Guo, W. Hu, Two-dimensional Cr2O3 and interconnected graphene–Cr2O3 nanosheets: synthesis and their application in lithium storage. J. Mater. Chem. A 2, 944–948 (2014). https://doi.org/10.1039/C3TA13535G

    Article  CAS  Google Scholar 

  17. C. Wen, X. Gao, T. Huang, X. Wu, L. Xu, J. Yu, H. Zhang, Z. Zhang, J. Han, H. Ren, Reduced graphene oxide supported chromium oxide hybrid as high efficient catalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 41(26), 11099–11107 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.051

    Article  CAS  Google Scholar 

  18. M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphenepolymer nanocomposites. Polym. Chem. 6, 6107–6124 (2015). https://doi.org/10.1039/C5PY00777A

    Article  CAS  Google Scholar 

  19. A. Linares, J.C. Canalda, M.E. Cagiao, M.C. Garcıa-Gutierrez, A. Nogales, I. Martın-Gullon, J. Vera, T.A. Ezquerra, Broad-band electrical conductivity of high density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromolecules 41, 7090–7097 (2008). https://doi.org/10.1021/ma801410j

    Article  CAS  Google Scholar 

  20. H. Zhang, X. Zhang, K.-B. Yoon, Synthesis of polyethylene/exfoliated MoS2 nanocomposites by in situ exfoliation polymerization using Ziegler–Natta catalyst intercalated MoS2. RSC Adv. 7, 52048–52052 (2017). https://doi.org/10.1039/C7RA10853B

    Article  CAS  Google Scholar 

  21. J. Kim, S.M. Hong, S. Kwak, Y. Seo, Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Phys. Chem. Chem. Phys. 11, 10851–10859 (2009). https://doi.org/10.1039/b913527h

    Article  CAS  PubMed  Google Scholar 

  22. S.L. Kodjie, L. Li, B. Li, W. Cai, C.Y. Li, M. Keating, Morphology and crystallization behavior of HDPE/CNT nanocomposite. J. Macromol. Sci. B 45, 231–245 (2006). https://doi.org/10.1080/00222340500522299

    Article  CAS  Google Scholar 

  23. E. Beyou, S. Akbar, P. Chaumont, P. Cassagnau, Polymer nanocomposites containing functionalised multiwalled carbon nanotubes: a particular attention to polyolefin based materials. In: Syntheses and Applications of Carbon Nanotubes and Their Composites. (IntechOpen, London, 2013). https://doi.org/10.5772/50710

  24. T.K. Gupta, S. Kumar, A.Z. Khan, K.M. Varadarajan, W.J. Cantwel, Self-sensing performance of MWCNT-low density polyethylene nanocomposites. Mater. Res. Express 5, 015703 (2018). https://doi.org/10.1088/2053-1591/aa9f9e

    Article  CAS  Google Scholar 

  25. M.A. Al-Harthi, B.K. Bahuleyan, Mechanical properties of polyethylene-carbon nanotube composites synthesized by in situ polymerization using metallocene catalysts. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/4057282

    Article  Google Scholar 

  26. W. Yuan, L. Huang, Q. Zhou, G. Shi, Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. ACS Appl. Mater. Interfaces 6(19), 17003–17008 (2014). https://doi.org/10.1021/am504616c

    Article  CAS  PubMed  Google Scholar 

  27. M.A. Darabi, A. Khosrozadeh, Q. Wang, M. Xing, Gum sensor: a stretchable, wearable, and foldable sensor based on carbon nanotube/chewing gum membrane. ACS Appl. Mater. Interfaces 7(47), 26195–26205 (2015). https://doi.org/10.1021/acsami.5b08276

    Article  CAS  PubMed  Google Scholar 

  28. C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18(7), 777–788 (2008). https://doi.org/10.1016/j.pnsc.2008.03.002

    Article  CAS  Google Scholar 

  29. X. Lin, Y. Xi, R. Zhao, J. Shi, N. Yan, Construction of C60-decorated SWCNTs (C60-CNTs)/bismuth-based oxide ternary heterostructures with enhanced photocatalytic activity. RSC Adv. 7, 53847 (2017). https://doi.org/10.1039/c7ra11056a

    Article  CAS  Google Scholar 

  30. M.M. Zagho, M.A.A. Al Maadeed, K. Majeed, Thermal properties of TiO2NP/CNT/LDPE hybrid nanocomposite films. Polymers 10, 1270 (2018). https://doi.org/10.3390/polym10111270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Li, S. Tang, L. Lu, H.C. Zeng, Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129, 9401–9409 (2007). https://doi.org/10.1021/ja071122v

    Article  CAS  PubMed  Google Scholar 

  32. P. Asen, S. Shahrokhian, A.I. Zad, Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. J. Electroanal. Chem. 823, 505–516 (2018). https://doi.org/10.1016/j.jelechem.2018.06.048

    Article  CAS  Google Scholar 

  33. K. Ghanbari, F. Nejabati, Ternary nanocomposite based reduced graphene oxide/chitosan/Cr2O3 for simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat. Anal. Methods 12, 1650–1661 (2020). https://doi.org/10.1039/D0AY00161A

    Article  CAS  Google Scholar 

  34. M.E. Karlsson, X. Xu, H. Hillborg, V. Ström, M.S. Hedenqvist, F. Nilsson, R.T. Olsson, Lamellae-controlled electrical properties of polyethelene-morphology, oxidation and effects of antioxidants on the DC conductivity. RSC Adv. 10, 4698–4709 (2020). https://doi.org/10.1039/C9RA09479B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y.Z.F. Li, G.Q. Lu, Z.H. Zhu, Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction. J. Phys. Chem. B 110, 178–183 (2012). https://doi.org/10.1021/jp053810b

    Article  CAS  Google Scholar 

  36. R.K. Goyal, A.B. Kulkarni, Electrical properties of novel three-phase polymer nanocomposites with a high dielectric constant. J. Phys. D 45(46), 465302 (2012). https://doi.org/10.1088/0022-3727/45/46/465302

    Article  CAS  Google Scholar 

  37. R. Das, S.L. Banerjee, P.P. Kundu, Fabrication and characterization of in situ graphene oxide reinforced high performance shape memory polymeric nanocomposites from vegetable oil. RSC Adv. 6, 27648–27658 (2016). https://doi.org/10.1039/C5RA25744A

    Article  CAS  Google Scholar 

  38. N. Diez, C. Botas, R. Mysyk, E. Goikolea, T. Rojo, D. Carriazo, Highly packed graphene-CNT films as electrodes for aqueous supercapacitors with high volumetric performance. J. Mater. Chem. A 6, 3667–3673 (2018). https://doi.org/10.1039/C7TA10210K

    Article  CAS  Google Scholar 

  39. D. Caruntu, B. Kavey, S. Paul, A. Bas, A. Rotaru, G. Caruntu, Dielectric properties of solution-processed BaTiO3-styrene butadiene styrene nanocomposite films. CrystEngComm 22, 1261–1272 (2020). https://doi.org/10.1039/C9CE01912J

    Article  CAS  Google Scholar 

  40. M. Kazimi, S. Tahir, S.B. Jamari, C.K.M. Faizal, Characterization of functionalized low density polyethylene/polyaniline nano fiber composite. J. Med. Biol. Eng. 3(4), 306–310 (2014). https://doi.org/10.12720/jomb.3.4.306-310

    Article  Google Scholar 

  41. S. Fatima, S.I. Ali, M.Z. Iqbal, S. Rizwan, The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids. RSC Adv. 7, 35928 (2017). https://doi.org/10.1039/C7RA04281G

    Article  CAS  Google Scholar 

  42. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 17, 419–431 (2018). https://doi.org/10.1016/j.jmrt.2017.06.009

    Article  CAS  Google Scholar 

  43. D.C. Basset, Chain-extended polyethylene in context: a review. Polymers 17(6), 460–470 (1976). https://doi.org/10.1016/0032-3861(76)90124-5

    Article  Google Scholar 

  44. M. Bevis, E.B. Crellin, The geometry of twinning and phase transformations in crystalline polyethylene. Polymers 12, 666–684 (1971). https://doi.org/10.1016/0032-3861(71)90083-8

    Article  CAS  Google Scholar 

  45. C.W. Bunn, Fires from Synthetic Polymers (Elsevier, Amsterdam, 1953), pp.240–300

    Google Scholar 

  46. Y. Lin, W. Du, D. Tu, W. Zhong, Q. Du, Space charge distribution and crystalline structure in low density polyethylene (LDPE) blended with high density polyethylene (HDPE). Polym. Int. 54, 465–470 (2005). https://doi.org/10.1002/pi.1727

    Article  CAS  Google Scholar 

  47. E. Jamróz, P. Kulawik, P. Kopel, The effect of nanofiller on the functional properties of biopolymer-based films: a review. Polymers 11(4), 675 (2019). https://doi.org/10.3390/polym11040675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Kumar, A.D. Singh, V. Kumar, P.P. Kundu, Incorporation of nano-Al2O3 within the blend of sulfonated-PVdF-co-HFP and Nafion for high temperature application in DMFCs. RSC Adv. 5, 63465 (2015). https://doi.org/10.1039/C5RA07992F

    Article  CAS  Google Scholar 

  49. G. Mishra, M. Mukhopadhyay, Flux improvement, rejection, surface energy and antibacterial study with synthesized TiO2-Mo.HNTs/PVC nanocomposite ultrafiltration membrane. New J. Chem. 41, 15049–1505 (2017). https://doi.org/10.1039/C7NJ02774E

    Article  CAS  Google Scholar 

  50. W. Wang, D. Min, S. Li, Understanding the conduction and breakdown properties of polyethylene nanodielectrics: effect of deep traps. IEEE Trans. Dielectr. Electr. Insul. 23(1), 564–572 (2016). https://doi.org/10.1109/TDEI.2015.004823

    Article  Google Scholar 

  51. J.H. Choe, J. Jeon, M.E. Lee, J.J. Wie, H.-J. Jin, Y.S. Yun, Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly(vinyl chloride). Nanoscale 10, 2025–2033 (2018). https://doi.org/10.1039/C7NR07098E

    Article  CAS  PubMed  Google Scholar 

  52. X.-L. Zheng Fei, H.-D. Jin, M.-Q. Zhu, W.-H. Yuan, X.T. Hao, K.P. Ghiggino, Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem. Commun. 51, 3824–3827 (2015). https://doi.org/10.1039/C5CC00056D

    Article  CAS  Google Scholar 

  53. A. Choudhury, Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets. RSC Adv. 4, 8856–8866 (2014). https://doi.org/10.1039/C3RA46908E

    Article  CAS  Google Scholar 

  54. S.-T. Bee, L.T. Sin, N.O.K. Qi, C.T. Ratnam, A.R. Rahmat, Interactive effects of carbon nanotube and montmorrilonite reinforcement polyvinyl alcohol composite system. J. Vinyl Addit. Technol. (2019). https://doi.org/10.1002/vnl.21717

    Article  Google Scholar 

  55. D. Kumar, M. Singh, A.K. Singh, Crystallite size effect on lattice strain and crystal structure of Ba1/4Sr3/4MnO3 layered perovskite manganite. AIP Conf. Proc. 1953, 030185-1–030185-4 (2017). https://doi.org/10.1063/1.5032520

    Article  CAS  Google Scholar 

  56. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, Inc., Phillippines, 1978)

    Google Scholar 

  57. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  58. A. Brif, L. Bloch, B. Pokroy, Bio-inspired engineering of a zinc oxide/amino acid composite: synchrotron microstructure study. CrystEngComm 16, 3268–3273 (2014). https://doi.org/10.1039/C3CE42520G

    Article  CAS  Google Scholar 

  59. M.S. Sreekanth, A.S. Panwar, P. Potschkeb, A.R. Bhattacharyya, Influence of hybrid nano-filler on the crystallization behaviour and interfacial interaction in polyamide 6 based hybrid nano-composites. Phys. Chem. Chem. Phys. 17, 9410–9419 (2015). https://doi.org/10.1039/C5CP00018A

    Article  CAS  PubMed  Google Scholar 

  60. M.M. Bernal, S. Pardo-Alonso, E. Solorzano, M.A. Lopez-Manchado, R. Verdejo, M.A. Rodriguez-Perez, Effect of carbon nanofiller on flexible polyurethane foaming from a chemical and physical perspective. RSC Adv. 4, 20761–20768 (2014). https://doi.org/10.1039/C4RA00116H

    Article  Google Scholar 

  61. J. Yang, J. Wang, Y. Tang, D. Wang, B. Xiao, X. Li, R. Li, G. Liang, T.-K. Sham, X. Sun, In situ self-catalyzed formation of core–shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. J. Mater. Chem. A 1, 7306–7311 (2013). https://doi.org/10.1039/C3TA11262D

    Article  CAS  Google Scholar 

  62. Z. Ma, S. Zhao, X. Pei, X. Xionga, H. Bin, New insights into support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalyst. Catal. Sci. Technol. 7, 191–199 (2017). https://doi.org/10.1039/C6CY02089E

    Article  CAS  Google Scholar 

  63. T.A. Okhlopkova, R.V. Borisova, L.A. Nikiforov, A.M. Spiridonov, A.A. Okhlopkova, D.-Y. Jeong, J.-H. Cho, Supramolecular structure and mechanical characteristics of ultrahigh-molecular-weight polyethylene-inorganic nanoparticle nanocomposites. Bull. Korean Chem. Soc. 37, 439–444 (2016). https://doi.org/10.1002/bkcs.10700

    Article  CAS  Google Scholar 

  64. M. Hasana, R. Kumar, M.A. Barakat, M. Lee, Synthesis of PVC/CNT nanocomposite fibers using simple deposition technique for the application of Alizarin Red S (ARS) removal. RSC Adv. 5, 14393–14399 (2015). https://doi.org/10.1039/C4RA16043F

    Article  CAS  Google Scholar 

  65. J. Chen, B. Liu, X. Gao, D. Xu, A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 8, 28048–28085 (2018). https://doi.org/10.1039/C8RA04205E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Z. Qi, Y. Tan, Z. Zhang, L. Gao, C. Zhang, J. Tian, Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites. RSC Adv. 8, 38689–38700 (2018). https://doi.org/10.1039/C8RA08312F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. B. Wang, K. Zhang, C. Zhou, M. Ren, Y. Gu, T. Li, Engineering the mechanical properties of CNT/PEEK nanocomposites. RSC Adv. 9, 12836–12845 (2019). https://doi.org/10.1039/c9ra01212e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. P. Liu, W. Chen, Microwave-assisted selective heating to rapidly construct a nano-cracked hollow sponge for stretch sensing. J. Mater. Chem. C 8, 9391–9400 (2020). https://doi.org/10.1039/D0TC02190C

    Article  CAS  Google Scholar 

  69. J. Chen, Q. Yu, X. Cui, M. Dong, An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C7, 11710–11730 (2019). https://doi.org/10.1039/C9TC03655E

    Article  Google Scholar 

  70. A.C. Balazs, R.T.P. EmrickT, Nanoparticle polymer composites: where two small worlds meet. Science 314(5802), 1107–1110 (2006). https://doi.org/10.1126/science.1130557

    Article  CAS  PubMed  Google Scholar 

  71. M.A. Henderson, Photochemistry of methyl bromide on the α-Cr2O3 (0001) surface. Surf. Sci. 604(19–20), 1800–1807 (2010). https://doi.org/10.1016/j.susc.2010.07.008

    Article  CAS  Google Scholar 

  72. P. Bernazzani, V.T. Bich, H. Phuong-Nguyen, A. Haine, C. Chapados, L.H. Dao, G. Delmas, FTIR analysis of the phase content in low-density polyethylene. Can. J. Chem. 76(11), 1674–1687 (1998). https://doi.org/10.1139/v98-159

    Article  CAS  Google Scholar 

  73. S. Krimm, Infrared spectra of high polymers. Fortschr. Hochpolym. (1960). https://doi.org/10.1007/BFB0050351

    Article  Google Scholar 

  74. K. Yoshikaru, S. Krimm, Infrared studies of the role of monoclinic structure in the deformation of polyethylene. J. Macromol. Sci. Phys. B4, 461 (1970)

    Google Scholar 

  75. P.C. Painter, J. Havens, W.W. Hart, J.L. Koenig, A Fourier transform infrared spectroscopic investigation of polyethylene single crystals. II. Fine structure of the CH2 rocking mode. J. Polym. Sci. Polym. Phys. Ed. 15, 1237 (1977)

    Article  CAS  Google Scholar 

  76. M. Maroncelli, S.P. Qi, H.L. Strauss, R.G. Snyder, on planar conformers and the phase behavior of solid n-alkanes. J. Am. Chem.. Soc. 104, 6237–6247 (1982). https://doi.org/10.1021/ja00387a013

    Article  CAS  Google Scholar 

  77. P. Tiemblo, J. Guzman, R. Serrano, M. Hoyos, N. Garcia, Evidence of a monoclinic-like amorphous phase in composites of LDPE with spherical, fibrous and laminar nanofiller as studied by infrared spectroscopy. Eur. Polym. J. 45, 30–39 (2009). https://doi.org/10.1016/j.eurpolymj.2008.09.040

    Article  CAS  Google Scholar 

  78. W. Wang, Y. Tanaka, T. Takada, Space charge of polyethylene and electronic structure analysis of trapping site using common chemical groups. Sens. Mater. 29(8), 1223–1231 (2017). https://doi.org/10.18494/SAM.2017.1553

    Article  CAS  Google Scholar 

  79. L. Chen, T.D. Huan, R. Ramprasad, Electronic structure of polyethylene: role of chemical, morphological and interfacial complexity. Sci. Rep. 7, 6128 (2017). https://doi.org/10.1038/s41598-017-06357-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley, New York, 1986)

    Google Scholar 

  81. M.J. Cran, S.W. Bigger, Quantitative analysis of polyethylene blends by Fourier transform infrared spectroscopy. Appl. Spectrosc. 57(8), 928–932 (2003). https://doi.org/10.1366/000370203322258887

    Article  CAS  PubMed  Google Scholar 

  82. J.V. Gulmine, P.R. Janissek, H.M. Heise, L. Akcelrud, Polyethylene characterization by FTIR. Polym. Test. 21(5), 557–563 (2002). https://doi.org/10.1016/S0142-9418(01)00124-6

    Article  CAS  Google Scholar 

  83. R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 21, 347 (2014). https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

  84. S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015). https://doi.org/10.1039/C5NR02067K

    Article  CAS  PubMed  Google Scholar 

  85. H. Wu, J. Wang, Y. Zhao, X. Zhang, L. Xu, H. Liu, Y. Cui, Y. Cui, C. Li, Branched cellulose reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustain. Energy Fuels 3, 2642–2656 (2019). https://doi.org/10.1039/C9SE00361D

    Article  CAS  Google Scholar 

  86. K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, Bright green emission from f-MWCNT embedded co-doped Bi3++Tb3+:polyvinyl alcohol polymer nanocomposites for photonic applications. RSC Adv. 7, 15084–15095 (2017). https://doi.org/10.1039/C7RA01007A

    Article  CAS  Google Scholar 

  87. S.K. Swain, I. Jena, Polymer/carbon nanotube nanocomposites: a novel material. Asian J. Chem. 22(1), 1–15 (2010)

    CAS  Google Scholar 

  88. M. Zhao, S. Wang, Q. Bao, Y. Wang, P.K. Ang, K.P. Loh, A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent. Chem. Commun. 47, 4153–4155 (2011). https://doi.org/10.1039/c1cc10319a

    Article  CAS  Google Scholar 

  89. Y. Kim, E. Yang, H. Park, H. Choi, Anti-biofouling effect of a thin film nanocomposite membrane with a functionalized-carbonnanotube-blended polymeric support for the pressure-retarded osmosis process. RSC Adv. 10, 5697–5703 (2020). https://doi.org/10.1039/C9RA08870A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. N.U. Qadir, S.A.M. Said, R.B. Mansour, K. Mezghani, A. Ul-Hamid, Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Trans. 45, 15621–15633 (2016). https://doi.org/10.1039/C6DT02640K

    Article  CAS  PubMed  Google Scholar 

  91. C. Gao, X. Zhang, C. Zhang, Z. Sui, M. Hou, W.Z. DaiR, X. Zheng, Z. Zhang, Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine(RDX) under HIGH PRESSURE. Phys. Chem. Chem. Phys. 20, 14374–14383 (2018). https://doi.org/10.1039/C8CP01192C

    Article  CAS  PubMed  Google Scholar 

  92. N.K. Singh, M.L. Verma, M. Minakshi, PEO nanocomposite polymer electrolyte for solid state symmetric capacitors. Bull. Mater. Sci. 38(6), 1577–1588 (2015). https://doi.org/10.1007/s12034-015-0980-2

    Article  CAS  Google Scholar 

  93. T. Caykara, S. Demirci, M.S. Eroglu, O. Guven, Poly(ethylene oxide) and its blends with sodium alginate. Polymer 46, 10750–10757 (2005). https://doi.org/10.1016/j.polymer.2005.09.041

    Article  CAS  Google Scholar 

  94. R.T. Thomas, N. Sandhyarani, Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Adv. 3, 14080–14087 (2013). https://doi.org/10.1039/C3RA42226G

    Article  CAS  Google Scholar 

  95. K. Wenelska, E. Mijowska, Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with a exfoliated MoS2/MxOy. New J. Chem. 41, 13287–13292 (2017). https://doi.org/10.1039/C7NJ02566A

    Article  CAS  Google Scholar 

  96. C. Zuniga, L. Bonnaud, G. Lligadas, J.C. Ronda, M.G. Cadiz, P. Dubois, Convenient and solvent less preparation of purecarbon nanotube/polybenzoxazine nanocomposites with low percolation threshold and improved thermal and fire properties. J. Mater. Chem. A 2, 6814–6822 (2014). https://doi.org/10.1039/C4TA00217B

    Article  CAS  Google Scholar 

  97. D.K. Patel, L.-T. DuttaSD, Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv. 9, 19143–19162 (2019). https://doi.org/10.1039/C9RA03261D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A.M. Dıez-Pascual, G. Martınez, M.T. Martınez, M.A. Gomez, Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes. J. Mater. Chem. 20, 8247–8256 (2010). https://doi.org/10.1039/c0jm01531h

    Article  CAS  Google Scholar 

  99. Z. Cai, H. Zhou, J. Song, F. Zhao, J. Li, Preparation and characterization of Zn0.9Mg0.1TiO3 via electrospinning. Dalton Trans. 40, 8335–8339 (2011). https://doi.org/10.1039/c1dt10737b

    Article  CAS  PubMed  Google Scholar 

  100. S. Borysiak, The thermo-oxidative stability and flammability of wood/polypropylene composites. J. Therm. Anal. Calorim. 119, 1955–1962 (2015). https://doi.org/10.1007/s10973-014-4341-y

    Article  CAS  Google Scholar 

  101. M.L. Chen, K.Y. Cho, W.C. Oh, Synthesis and photocatalytic behaviors of Cr2O3–CNT/TiO2 composite materials under visible light. J. Mater. Sci. 45, 6611–6616 (2010). https://doi.org/10.1007/s10853-010-4751-6

    Article  CAS  Google Scholar 

  102. H. Zhang, J. Zhang, R. Yun, Z. Jiang, H. Liu, D. Yan, Nanohybrids of organo-modified layered double hydroxides and polyurethanes with enhanced mechanical, damping and UV absorption propertie. RSC Adv. 6, 34288–34296 (2016). https://doi.org/10.1039/C6RA04398D

    Article  CAS  Google Scholar 

  103. S. Mallakpour, M. Naghdi, A.G. Strategy, Toward preparation of poly(vinyl chloride) nanocomposites reinforced with MnO2@layered double hydroxide nanohybrid as efficient UV shielding materials. New J. Chem. 44, 11566–11576 (2020). https://doi.org/10.1039/D0NJ02135K

    Article  CAS  Google Scholar 

  104. Q. Song, S. Cao, R.H. Pritchard, H. Qiblawey, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. J. Mater. Chem. A 4, 270–279 (2016). https://doi.org/10.1039/C5TA09060A

    Article  CAS  Google Scholar 

  105. R. Sharma, K. Yadav, Effect of lattice defects on the structural and optical properties of Ni1XAgXO (where X = 0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) nanoparticles. Appl. Phys. A 124, 88 (2018). https://doi.org/10.1007/s00339-017-1531-z

    Article  CAS  Google Scholar 

  106. A. Kumar, K. Yadav, Optical properties of nanocrystallites films of α-Fe2O3 and α-Fe2xCrxO3 (0.0 ≤ x ≤ 0.9) deposited on glass substrates. Mater. Res. Express 4, 075003 (2017). https://doi.org/10.1088/2053-1591/aa75e9

    Article  CAS  Google Scholar 

  107. N. Bhardwaj, A. Gaur, K. Yadav, Effect of doping on optical properties in BiMn1−x(TE)xO3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol–gel methods. Appl. Phys. A 123, 429 (2017). https://doi.org/10.1007/s00339-017-1042-y

    Article  CAS  Google Scholar 

  108. Y.K. Anu, Optical and dielectric properties of Bi2Ti2O7/Bi4Ti3O12 nanocomposite. Mater. Today: Proc. 28, 153–157 (2020). https://doi.org/10.1016/j.matpr.2020.01.467

    Article  CAS  Google Scholar 

  109. Y.K. Anu, A. Gaur, K.K. Haldar, Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanoparticles. Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2021.111373

    Article  Google Scholar 

  110. M. Ahmadi, O. Zabihi, S. Jeon, M. Yoonessi, A. Dasari, S. Ramakrishna, M. Naebe, 2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multifunctional polymer nanocomposites. J. Mater. Chem. A 8, 845–883 (2020). https://doi.org/10.1039/C9TA10130F

    Article  CAS  Google Scholar 

  111. K. Hu, M. Yao, Z. Yang, G. Xiao, L. Zhu, H. Zhang, R. Liu, B. Zou, B. Liu, Pressure tuned photoluminescence and band gap in two-dimensional layered g-C3N4: the effect of interlayer interactions. Nanoscale 12, 12300–12307 (2020). https://doi.org/10.1039/D0NR01542C

    Article  CAS  PubMed  Google Scholar 

  112. G.O. Siqueira, T. Matencio, H.V. da Silva, Y.G. de Souza, J.D. Ardisson, G.M. de Lima, P.A. de Oliveira, Temperature and time dependence on ZnS microstructure and phases obtained through hydrothermal decomposition of diethyldithiocarbamate complexes. Phys. Chem. Chem. Phys. 15, 6796–6803 (2013). https://doi.org/10.1039/C3CP50549A

    Article  CAS  PubMed  Google Scholar 

  113. S. Chakraborty, N.L. Mary, A carbon nanotube reinforced functionalized styrene–maleic anhydride copolymer as an advanced electrode material for efficient energy storage applications. New J. Chem. 44, 4406–4416 (2020). https://doi.org/10.1039/C9NJ05978D

    Article  CAS  Google Scholar 

  114. M. Hasan, R. Kumar, M.A. Barakat, M. Lee, Synthesis of PVC/CNT nanocomposite fibers using simple deposition technique for the application of Alizarin Red S (ARS) removal. RSC Adv. 5, 14393–14399 (2015). https://doi.org/10.1039/C4RA16043F

    Article  CAS  Google Scholar 

  115. R. Jaiswal, K. Agarwal, R. Kumar, R. Kumar, K. Mukhopadhyay, N.E. Prasad, EMI and microwave absorbing efficiency of polyaniline functionalized reduced graphene oxide/γ-Fe2O3/epoxy nanocomposite. Soft Matter (2020). https://doi.org/10.1039/D0SM00266F

    Article  PubMed  Google Scholar 

  116. C. Xinyue, J.-K. Tseng, I. Treufeld, M. Mackey, D.E. Schuele, R. Li, M. Fukuto, E. Baer, L. Zhu, Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J. Mater. Chem. C 5, 10417–10426 (2017). https://doi.org/10.1039/C7TC03653A

    Article  Google Scholar 

  117. A. Khurram, S.A. Rakha, P. Zhou, M. Shafi, A. Munir, Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J. Appl. Phys. 118, 044105 (2015). https://doi.org/10.1063/1.4927617

    Article  CAS  Google Scholar 

  118. A.A. Khurram, S.A. Rakha, N. Ali, A. Munir, P. Zhou, M.A. Raza, Comparison of the dielectric response of hybrid polymer composites filled with one-dimensional and two-dimensional carbonaceous materials in the microwave range. Adv. Polym. Technol. (2016). https://doi.org/10.1002/adv.21734

    Article  Google Scholar 

  119. M. Rams-Baron, A. Jedrzejowska, M. Dulski, K. Wolnica, K. Geirhos, P. Lunkenheimer, M. Paluch, Unusual dielectric response of 4-methyl-1,3-dioxolane derivatives. Phys. Chem. Chem. Phys. 20, 28211–28222 (2018). https://doi.org/10.1039/C8CP05913F

    Article  CAS  PubMed  Google Scholar 

  120. B. Adak, I. Chinya, S. Sen, Enhanced dielectric and energy storage performance of surface treated gallium ferrite/polyvinylidene fluoride nanocomposites. RSC Adv. 6, 105137–105145 (2016). https://doi.org/10.1039/C6RA22939E

    Article  CAS  Google Scholar 

  121. H. Wu, P. Yao, N. Ning, L. Zhang, H. Tian, Y. Wu, M. Tian, A novel dielectric elastomer by constructing dualnetwork structure of carbon nanotubes and rubber nanoparticles in dynamically vulcanized thermoplastic elastome. RSC Adv. 6, 32932–32939 (2016). https://doi.org/10.1039/C6RA01463A

    Article  CAS  Google Scholar 

  122. E.U. Mapesa, M. Tarnacka, E. Kamińska, K. Adrjanowicz, M. Dulski, W. Kossack, M. Tress, W.K. Kipnusu, K. Kamiński, F. Kremer, Molecular dynamics of itraconazole confined in thin supported layers. RSC Adv. 4, 28432–28438 (2014). https://doi.org/10.1039/C4RA01544D

    Article  CAS  Google Scholar 

  123. L. Xie, X. Huang, B.-W. Li, C. Zhi, T. Tanakae, P. Jiang, Core–satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys. Chem. Chem. Phys. 15, 17560–17569 (2013). https://doi.org/10.1039/C3CP52799A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Central Instrumentation Laboratory (CIL), and the Department of Physics, Central University of Punjab (CUP), Bathinda, for providing research facilities. They would also like to extend thanks to the Department of Environmental Sciences, CUP for their help with the TGA data measurement.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

JG: Conceptualization, Investigation, Formal analysis, Validation, Visualization, Writing—original draft. AK, AR, Anu, Deeksha, PK, RPS, and GKY: Conceptualization, Investigation, Validation, Visualization, Writing—review & editing. KY: Supervision, Conceptualization, Investigation, Writing—review & editing, Validation, Visualization.

Corresponding author

Correspondence to Kamlesh Yadav.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4728 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J., Kumar, A., Roy, A. et al. Effects of Interfacial Interactions and Nanoparticle Agglomeration on the Structural, Thermal, Optical, and Dielectric Properties of Polyethylene/Cr2O3 and Polyethylene/Cr2O3/CNTs Nanocomposites. J Inorg Organomet Polym 33, 407–423 (2023). https://doi.org/10.1007/s10904-022-02508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02508-5

Keywords

Navigation