Skip to main content
Log in

Effect of lattice defects on the structural and optical properties of Ni1 − XAgXO (where X = 0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Ni1 − XAgXO (where X = 0, 0.01, 0.02, 0.03, 0.05, 0.10, and 0.15) nanoparticles are synthesized by sol–gel technique. The effects of Ag-doping in NiO nanoparticle on the structural and optical properties are studied. XRD analysis confirms that the prepared samples are single phase and oxygen deficient in nature. The unit cell volume decreases with the increase in the Ag-doping content. The crystallite size decreases from 23 to 19 nm with increasing the Ag-doping content up to X = 0.10. The strain increases with increase in Ag-doping concentration. FESEM analysis confirms that the pure sample of NiO is quasi-spherical and this shape is deformed as the Ag content increases in the NiO samples. The increase in the agglomeration of nanoparticles with the increase in doping content is also observed. UV–Visible analysis shows that the calculated optical band gap of the pure NiO sample is 3.70 eV which is less than the reported value 4.42 eV of NiO nanoparticles. The optical band gap increases as the Ag-doping content increases in the host NiO lattice. The change in band gap is increased rapidly for the X = 0.01 sample and then become slow for the rest of the samples. FT–IR analysis gives all the information regarding the functional group present in the samples. The effect of disorder created due to Ag-doping in NiO lattice leads to the formation of lattice defects and affects the structural and optical properties, which have been discussed in this paper in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One-dimensional metal-oxide nanostructures: recent developments in Synthesis, characterization, and applications. Adv. Funct. Mater. 22(16), 3326–3370 (2012)

    Google Scholar 

  2. K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. J. Alloy Compd. 509(1)), 181–184 (2011)

    Google Scholar 

  3. G. Singh, D. Jalandhara, K. Yadav, Effect of grain size on optical properties of iron oxide nanoparticles. AIP Conf. Proc. 1728(1), 020409 (2016) (1–4)

    Google Scholar 

  4. N. Bhardwaj, A. Gaur, K. Yadav, Effect of doping on optical properties in BiMn1 – x(TE)xO3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol–gel methods. Appl. Phys. A 123, 429 (2017) (1–7)

    ADS  Google Scholar 

  5. A. Kumar, K. Yadav, Optical properties of nanocrystallites films of α-Fe2O3 and α-Fe2 – xCrxO3 (0.0 ≤ x ≤ 0.9) deposited on glass substrates. Mater. Res. Express 4, 075003 (2017) (1–11)

    ADS  Google Scholar 

  6. C.R.H. Bahl, The magnetic properties of antiferromagnetic nanoparticles: NiO and Fe2O3. Risø National Laboratory. (Risø-PhD; No. 30(EN)) (2006)

  7. S.P. Walch, W.A. Goddard III, Electronic states of the nickel oxide molecule. ‎J. Am. Chem. Soc. 100(5), 1338–1348 (1978)

    Google Scholar 

  8. R. Newman, R.M. Chrenko, Optical properties of nickel oxide. ‎Phys. Rev. 114, 1507–1513 (1959)

    ADS  Google Scholar 

  9. A. Rostamnejadi, S. Bagheri, Optical, magnetic, and microwave properties of Ni/NiO nanoparticles. Appl. Phys. A 123, 233 (2017) (1–9)

    ADS  Google Scholar 

  10. M. Carbone, E. M.a Bauer, L. Micheli, M. Missori, NiO morphology dependent optical and electrochemical properties. ‎Colloids Surf. A 532, 178–182 (2017)

    Google Scholar 

  11. N.M. Hosny, Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 30, 470–476 (2011)

    Google Scholar 

  12. A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, T. Ahmad, Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J. Mol. Struct. 1058, 56–61 (2014)

    ADS  Google Scholar 

  13. S.A. Makhlouf, M.A. Kassem, M.A. Abdel-Rahim, Crystallite size-dependent optical properties of nanostructured NiO films. Optoelectron Adv. Mat. 4(10), 1562–1567 (2010)

    Google Scholar 

  14. W.J. Duan, S.H. Lu, Z.L. Wu, Y.S. Wang, Size effects on properties of NiO nanoparticles grown in alkali salts. J. Phys. Chem. C 116, 26043–26051 (2012)

    Google Scholar 

  15. A. Kalam, A.S. Al-Shihri, M. Shakir, A.A. El-Bindary, S.S. El, G. Yousef, Du, Spherical NiO nanoparticles (SNPs): synthesis, characterization, and optical properties. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 41(10), 1324–1330 (2011)

    Google Scholar 

  16. G. Natu, P. Hasin, Z. Huang, Z. Ji, M. He, Y. Wu, Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4(11), 5922–5929 (2012)

    Google Scholar 

  17. D. Chen, F. Deng, C. Ding, Y. Wang, H. Li, An Nb-doped nickel oxide–carbon nanotubes composite-enhanced electrochemical DNA biosensor for detection of Lead (II) Ion. Int. J. Electrochem. Sci 10(11), 9015–9027 (2015)

    Google Scholar 

  18. J. Jia, F. Luo, C. Gao, C. Suo, X. Wang, H. Song, X. Hu, Synthesis of La-doped NiO nanofibers and their electrochemical properties as electrode for supercapacitors. Ceram Int 40(5), 6973–6977 (2014)

    Google Scholar 

  19. P. Muthukumaran, C.V. Raju, C. Sumathi, G. Ravi, D. Solairaj, P. Rameshthangam, S. Alwarappan, Cerium doped nickel-oxide nanostructures for riboflavin biosensing and antibacterial applications. New J. Chem. 40(3), 2741–2748 (2016)

    Google Scholar 

  20. J. Li, R. Yan, B. Xiao, D.T. Liang, D.H. Lee, Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels 22(1), 16–23 (2007)

    Google Scholar 

  21. Y. Yao, J. Zhang, Z. Wei, A. Yu, Hydrothermal synthesis of porous NiO nanosheets and application as anode material for lithium ion batteries. Int. J. Electrochem. Sci 7, 1433–1442 (2012)

    Google Scholar 

  22. P. Lunkenheimer, A. Loidl, C.R. Ottermann, K. Bange, Correlated barrier hopping in NiO films. Phys. Rev. B 44(11), 5927 (1991)

    ADS  Google Scholar 

  23. H.P. Rooksby, Structure of nickel oxide. Nature 152(3854), 304 (1943)

    ADS  Google Scholar 

  24. R.W. Cairns, E. Ott, X-ray studies of the system nickel—oxygen—water. I. Nickelous oxide and hydroxide. ‎J. Am. Chem. Soc. 55(2), 527–533 (1933)

    Google Scholar 

  25. M. Oliver, S.C. Parker, W.C. Mackrodt, Computer simulation of the crystal morphology of NiO. Model. Simul. Mater. Sci. Eng. 1(5), 755 (1993)

    ADS  Google Scholar 

  26. H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236(1), 27–33 (1993)

    ADS  Google Scholar 

  27. D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2(8), 3112–3134 (1970)

    ADS  Google Scholar 

  28. S. D.Varshney, Dwivedi, Synthesis, structural, Raman spectroscopic and paramagnetic properties of Sn doped NiO nanoparticles. Superlattices Microstruct. 86, 430–437 (2015)

    ADS  Google Scholar 

  29. S.M. Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason Sonochem. 19(4), 841–845 (2012)

    Google Scholar 

  30. P. Jeevanandam, Y. Koltypin, A. Gedanken, Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett. 1(5), 263–266 (2001)

    ADS  Google Scholar 

  31. Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method. Mater Lett 61(14), 3174–3178 (2007)

    Google Scholar 

  32. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol–gel method. ‎J. Mater. Sci. Mater. Electron 23(3), 728–732 (2012)

    Google Scholar 

  33. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO Nanoparticles through sol–gel Method. Procedia Chem. 19, 626–631 (2016)

    Google Scholar 

  34. A.S. Danial, M.M. Saleh, S.A. .Salih, M.I. Awad, On the synthesis of nickel oxide nanoparticles by sol–gel technique and its electrocatalytic oxidation of glucose. J. Power Sources 293, 101–108 (2015)

    ADS  Google Scholar 

  35. A. Rahdar, M. Aliahmad, Y. Azizi, NiO nanoparticles: synthesis and characterization. J Nanostruct. 5(2), 145–151 (2015)

    Google Scholar 

  36. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater. Lett. 68, 168–170 (2012)

    Google Scholar 

  37. Y. Chen, D.L. Peng, D. Lin, X. Luo, Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18(50), 505703 (2007)

    ADS  Google Scholar 

  38. T. Takei, J. Suenaga, T. Ishida, M. Haruta, Ethanol oxidation in water catalyzed by gold nanoparticles supported on NiO doped with Cu. Top. Catal. 58(4–6), 295–301 (2015)

    Google Scholar 

  39. G. Allaedini, P. Aminayi, S.M. Tasirin, Structural properties and optical characterization of flower-like Mg doped NiO. AIP Adv. 5(7), 077161 (2015)

    ADS  Google Scholar 

  40. W. Guo, K.N. Hui, K.S. Hui, High conductivity nickel oxide thin films by a facile sol–gel method. Mater. Lett. 92, 291–295 (2013)

    Google Scholar 

  41. A. Alshahrie, I.S. Yahia, A. Alghamdi, P.Z. Al Hassan, Morphological, structural and optical dispersion parameters of Cd-doped NiO nanostructure thin film. Optik-Int. J. Light Electron Opt. 127(12), 5105–5109 (2016)

    Google Scholar 

  42. K.O. Moura, R.J.S. Lima, C.B.R. Jesus, J.G.S. Duque, C.T. Meneses, Fe-doped NiO nanoparticles: synthesis, characterization, and magnetic properties. Revista Mexicana de Fisica S 58(2), 167–170 (2012)

    Google Scholar 

  43. S. Layek, H.C. Verma, Room temperature ferromagnetism in Mn-doped NiO nanoparticles J. Magn. Magn. Mater. 397, 73–78 (2016)

    ADS  Google Scholar 

  44. Z. Halem, N. Halem, M. Abrudeanu, S. Chekroude, C. Petot, G. Petot-Ervas, Transport properties of Al or Cr-doped nickel oxide relevant to the thermal oxidation of dilute Ni-Al and Ni-Cr alloys. Solid State Ionics 297, 13–19 (2016)

    Google Scholar 

  45. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces (8), 4024–4030 (2012)

    Google Scholar 

  46. X. Han, N. Amrane, Z. Zhang, M. Benkraouda, Oxygen Vacancy Ordering and Electron Localization in CeO2: Hybrid Functional Study. J. Phys. Chem. C 120(25), 13325–13331 (2016)

    Google Scholar 

  47. S. Park, H. Kheel, G.-J. Sun, S.K. Hyun, S.E. Park, C. Lee, Ethanol sensing properties of Au-functionalized NiO nanoparticles. Bull. Korean Chem. Soc. 37, 713–719 (2016)

    Google Scholar 

  48. Z. Jiang, J. Xie, D. Jiang, X. Wei, M.Chen, Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. Cryst. Eng. Comm. 15(3), 560–569 (2013)

    Google Scholar 

  49. Y. Zhang, The first observation of Ni and Ni2O3 phases in the sol–gel Ag-doped NiO film. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 46, 1565–1570 (2016)

    Google Scholar 

  50. O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, E. Kaminska, Theory of doping properties of Ag acceptors in ZnO. Phys. Rev. B 80, 245212 (2009) (1–8)

    ADS  Google Scholar 

  51. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol. 219, 158–164 (2012)

    Google Scholar 

  52. T.X.T. Sayle, S.C. Parker, C.R.A. Catlow, The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci. 316(3), 329–336 (1994)

    ADS  Google Scholar 

  53. L.E. Depero, A. Marino, B. Allieri, E. Bontempi, L. Sangaletti, C. Casale, M. Notaro, Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. J. Mater. Res. 15(10), 2080–2086 (2000)

    ADS  Google Scholar 

  54. X.S. Cui, The Basic Theory of Solid Chemistry. (Beijing Institute of Technology Printing, Beijing, 1991)

    Google Scholar 

  55. Y. Liu. C.Y. Liu, Q.H. Rong, Z. Zhang, Characteristics of the silver-doped TiO2 nanoparticles. Appl. Surf. Sci. 220(1)), 7–11 (2003)

    ADS  Google Scholar 

  56. N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. A. J. Mater. 2(1), 4–7 (2014)

    Google Scholar 

  57. M.M.A. Hussein, Optical and structural characteristics of NiO thin films doped with AgNPs by sputtering method. INAE Lett. 2, 35–39 (2017)

    Google Scholar 

  58. P.Y. Yang, F. Zeng, F. Pan, Exchange bias and training effect in Ni/Ag-doped NiO bilayers. J. Magn. Magn. Mater. 322(5), 542–547 (2010)

    ADS  Google Scholar 

  59. A.A. Akl, A.S. Hassanien, Microstructure and crystal imperfections of nanosized CdSxSe1–x thermally evaporated thin films. Superlattices Microstruct. 85, 67–81 (2015)

    ADS  Google Scholar 

  60. M.B. Dutt, R. Banerjee, A.K. Barua, Transport properties of Lithium and Sodium doped Nickel oxide. Phys. Status Solidi (a) 65(1), 365–370 (1981)

    ADS  Google Scholar 

  61. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philos. Mag. Lett. 88(3), 169–179 (2008)

    ADS  Google Scholar 

  62. M. Yang, H. Pu, Q. Zhou, Q. Zhang, Transparent p-type conducting K-doped NiO films deposited by pulsed plasma deposition. Thin Solid Films 520, 5884–5888 (2012)

    ADS  Google Scholar 

  63. A.M. El-Shabiny, G.A. El-Shobaky, I.F. Hewaidy, A.A. Ramadan, Microstrain and lattice parameter of pure and Li2O-doped nickel oxide solid. Cryst. Res. Technol. 23(7), 911–917 (1988)

    Google Scholar 

  64. A. Henglein, Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition. ‎J. Phys. Chem. 83(17), 2209–2216 (1979)

    Google Scholar 

  65. S. Tsunekawa, K. Ishikawa, Z.Q. Li, Y. Kawazoe, A. Kasuya, Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85(16), 3440–3443 (2000)

    ADS  Google Scholar 

  66. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    ADS  Google Scholar 

  67. D. Mott, J. Galkowski, L. Wang, J. Luo, C.-J. Zhong, Synthesis of Size-Controlled and Shaped Copper Nanoparticles. Langmuir 23, 5740–5745 (2007)

    Google Scholar 

  68. S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions. J Nanomater. 2013, 790323 (2013) (1–9)

    Google Scholar 

  69. D. Coleman, L. Vanatta statistics in analytical chemistry: part 14—calibration example 4. (2004) http://www.americanlaboratory.com/913-Technical-Articles/1688-Statistics-in-Analytical-Chemistry-Part-14-Calibration-Example-4/. Accessed 17 Dec 2004

  70. R. Vasan, F. Gao, M.O. Manasreh, C.D. Heyes, Investigation of charge transport between nickel oxide nanoparticles and CdSe/ZnS alloyed nanocrystals. MRS Adv. Mater. Res. Soc. (2017) https://doi.org/10.1557/adv.2017.488

    Article  Google Scholar 

  71. A.J. Varkey, A.F. Fort, Solution growth technique for deposition of nickel oxide thin films. Thin Solid Films 235, 47–50 (1993)

    ADS  Google Scholar 

  72. X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnol 16(1), 37–39 (2004)

    ADS  Google Scholar 

  73. R. Vasan, H. Salman, M.O. Manasreh, All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers. MRS Adv. 1, 305–310 (2016)

    Google Scholar 

  74. S. Liu, R. Liu, Y. Chen, S. Ho, H. Jong, J.H. Kim, F. So, Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chem. Mater. 26, 4528–4534 (2014)

    Google Scholar 

  75. F. Mehmood, R. Pachter, N.R. Murphy, W.E. Johnson, C.V. Ramana, Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations. J. Appl. Phys. 120, 233105 (2016)

    ADS  Google Scholar 

  76. L. Kumari, W.Z. Li, C.H. Vannoy, R.M. Leblanc, D.Z. Wang, Vertically aligned and interconnected nickel oxide nanowalls fabricated by hydrothermal route. Cryst. Res. Technol. 44, 495–499 (2009)

    Google Scholar 

  77. T. Tsuzuki, J.S. Robinson, P.G. Mccormick, UV-shielding ceramic nanoparticles synthesised by mechanochemcial processing. J. Am. Ceram. Soc. 38(1), 15–19 (2002)

    Google Scholar 

  78. V. Patil, S. Pawar, M. Chougule, P. Godse, R. Sakhare, S. Sen, P. Joshi, Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films. J. Surf. Eng. Mater. Adv. Technol. 1, 35–41 (2011)

    Google Scholar 

  79. N. Peijiang, Y. Jinliang, M. Delan, The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. Semicond. Sci. Technol 36(4), 043004 (2015) (1–6)

    Google Scholar 

  80. M.M. El-Nahass, H.S. Soliman, A. El-Denglawey, Absorption edge shift, optical conductivity, and energy loss function of nano thermal-evaporated N-type anatase TiO2 films. Appl. Phys. A 122(8), 775 (2016) (1–10)

    ADS  Google Scholar 

  81. R.R. Reddy, Y.N. Ahammed, A study on the Moss relation. Infrared Phys. Technol. 36(5), 825–830 (1995)

    ADS  Google Scholar 

  82. A.N. Abd, R.S. Ali, A.A. Hussein, Fabrication and characterization of nickel oxide nanoparticles/silicon heterojunction. J. Multidiscip. Eng. Sci. Studies 2(4), 434–440 (2016)

    Google Scholar 

  83. M.S. Hossan, M.A. Rahman, M.R. Karim, M.A. Miah, H. Ahmad, Preparation of epoxy functionalized hybrid nickel oxide composite polymer particles. Am. J. Polym. Sci. 3(5), 83–89 (2013)

    Google Scholar 

  84. M. Vivek, P.S. Kumar, S. Steffi, S. Sudha, Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol. 3(3), 143–148 (2011)

    Google Scholar 

Download references

Acknowledgements

One of the authors (Rohit Sharma) is grateful to the Central Instrumentation Laboratory (CIL) and Department of Physical Sciences, Central University of Punjab, Bathinda for providing the research facilities. Authors are also thankful to the Thaper University, Patiala, for the XRD characterization. Rohit Sharma would also like to acknowledge Nilesh Saykr and Anil Arya for their help in plotting the graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Yadav, K. Effect of lattice defects on the structural and optical properties of Ni1 − XAgXO (where X = 0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) nanoparticles. Appl. Phys. A 124, 88 (2018). https://doi.org/10.1007/s00339-017-1531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1531-z

Navigation