Skip to main content

Advertisement

Log in

The Role of TiO2 Nanoparticles in the Structural, Thermal and Electrical Properties and Antibacterial Activity of PEO/PVP Blend for Energy Storage and Antimicrobial Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (TiO2NPs) were successfully synthesized via the sol–gel method. Samples based on poly (ethylene oxide) (PEO)/polyvinylpyrrolidone (PVP) (50/50 wt%) loaded with TiO2NPs was prepared via casting method. X-ray diffraction (XRD) showed that the semi-crystalline features of the PEO/PVP blend. Transmission electron microscopy (TEM) shows that the prepared TiO2NPs have an average diameter of about 14.5 nm. Fourier transform infrared (FT-IR) spectroscopy exhibited the interactions between TiO2NPs and the functional groups of PEO/PVP blend, in particular the C–O–C ether group for PEO and C=O groups for PVP. Thermogravimetric analysis (TGA) shows an improvement in thermal stability after incorporation of TiO2NPs into a polymeric matrix. Alternating current (AC) conductivity was increased with increasing concentration of the TiO2. The maximum value of AC conductivity was 1.65 × 10–5 S.cm−1 at 0.60 wt% of TiO2NPs in the polymeric sample. After the addition of TiO2NPs, an enhancement in the dielectric constant (ε′) and dielectric loss (ɛʺ) of PEO/PVP were revealed. The PEO/PVP/TiO2NPs samples were screened for their in vitro antibacterial activity against S. aureus and E. coli bacteria test. These nanocomposite films can be used in the semiconductors, portable electrochemical battery and energy-storage industries, due to the remarkable improvements in optical, thermal and electrical properties. Also, the excellent antibacterial activity of these samples supply a new and simple way to synthesize polymeric samples as functional biomaterial and has potential for use in food packaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Wang, L. Zhou, X.W. Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903–1911 (2012)

    Article  PubMed  CAS  Google Scholar 

  2. E. Liu, J. Wang, C. Shi, N. Zhao, C. He, J. Li, J.Z. Jiang, Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ASC Appl. Mater. Interface. 6, 18147–18151 (2014)

    Article  CAS  Google Scholar 

  3. S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Graphene: a two-dimensional platform for lithium storage. Small 9, 1173–1187 (2013)

    Article  PubMed  CAS  Google Scholar 

  4. G.B. Appetecchi, F. Croce, J. Hassoun, B. Scrosati, M. Salomon, F. Cassel, Hot-pressed, dry, composite, PEO-based electrolyte membranes: I Ionic conductivity characterization. J. Power Sources 114, 105–112 (2003)

    Article  CAS  Google Scholar 

  5. A.R. Polu, R. Kumar, AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA–PEG blended polymer electrolytes. Bull. Mater. Sci 34, 1063–1067 (2011)

    Article  CAS  Google Scholar 

  6. A.M. Alshehari, E. Salim, A.H. Oraby, Structural, optical, morphological and mechanical studies of polyethylene oxide/sodium alginate blend containing multi-walled carbon nanotubes. J. Mater. Res. Technol. 15, 5615–5622 (2021)

    Article  CAS  Google Scholar 

  7. M.A. Morsi, G.M. Asnag, A. Rajeh, N.S. Awwad, Nd: YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties. Compos. Commun. 24, 100662 (2021)

    Article  Google Scholar 

  8. A.M. Abdelghany, A.H. Oraby, G.M. Asnag, Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J. Mol. Struct. 1180, 15–25 (2019)

    Article  CAS  Google Scholar 

  9. Y. Tominaga, H. Ohno, Lithium ion conduction in linear-and network-type polymers of PEO/sulfonamide salt hybrid. Electrochim. Acta 45(19), 3081–3086 (2000)

    Article  CAS  Google Scholar 

  10. B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim. Acta 235, 210–222 (2017)

    Article  CAS  Google Scholar 

  11. K.N. Kumar, L. Vijayalakshmi, J. Choi, Optimization of NIR photoluminescence properties of Er3+/Yb3+-doped PEO/PVP blended composites. Optik 183, 805–812 (2019)

    Article  Google Scholar 

  12. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater. Des. 97, 532–543 (2016)

    Article  CAS  Google Scholar 

  13. I.S. Yahia, M.I. Mohammed, A.M. Nawar, Multifunction applications of TiO2/poly (vinyl alcohol) nanocomposites for laser attenuation applications. Phys. B: Condens. Matter 556, 48–60 (2019)

    Article  CAS  Google Scholar 

  14. N. Kovtyukhova, P.J. Ollivier, S. Chizhik, A. Dubravin, E. Bzaneva, A. Gorchinskiy et al., Self-assembly of ultrathin composite TiO2/polymer films. Thin Solid Films 337(1–2), 166–170 (1999)

    Article  CAS  Google Scholar 

  15. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras et al., Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym. Lett. 1(12), 781–789 (2007)

    Article  CAS  Google Scholar 

  16. M.M. Abutalib, A. Rajeh, Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J. Mater. Sci. Mater. Electron. 31, 9430–9442 (2020)

    Article  CAS  Google Scholar 

  17. Y. Liu, J.Y. Lee, L. Hong, Morphology, crystallinity, and electrochemical properties of in situ formed Poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J. Appl. Polym. Sci. 89, 2815–2822 (2003)

    Article  CAS  Google Scholar 

  18. A.M. AL-Baradi, S.F. Al-Shehri, A. Badawi, A. Merazga, A.A. Atta, A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite. Results Phys. 9, 879–885 (2018)

    Article  Google Scholar 

  19. B. Jaleh, N. Shahbazi, A. Jabbari, Optical and thermal properties of polycarbonate–TiO2 nanocomposite film. Synth. React. in Inorg. Metal-Org Nano-Metal Chem. 46(4), 602–607 (2016)

    Article  CAS  Google Scholar 

  20. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7(4), 419–431 (2018)

    Article  CAS  Google Scholar 

  21. P. Dhatarwal, R.J. Sengwa, Structural, dielectric dispersion and relaxation, and optical properties of multiphase semicrystalline PEO/PMMA/ZnO nanocomposites. Compos. Interfaces 28(8), 827–842 (2021)

    Article  CAS  Google Scholar 

  22. X. Hu, J. He, L. Zhu, S. Machmudah, H. Kanda, M. Goto, Synthesis of hollow PVP/Ag nanoparticle composite fibers via electrospinning under a Dense CO2 environment. Polymers 14(1), 89 (2022)

    Article  CAS  Google Scholar 

  23. M.M. Ba-Abbad, A.A. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4871–4888 (2012)

    CAS  Google Scholar 

  24. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC adv. 4(70), 36959–36966 (2014)

    Article  CAS  Google Scholar 

  25. S.N. Karthick, K. Prabakar, A. Subramania, Ji-Tae Hong, Jin-Ju Jang, Hee-Je Kim, Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technol. 205(1–3), 36–41 (2011)

    Article  CAS  Google Scholar 

  26. D. Tekin, D. Birhan, H. Kiziltas, Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater. Chem. Phys. 251, 0254–0584 (2020)

    Article  Google Scholar 

  27. N. Gondaliya, D. Kanchan, P. Sharma, P. Joge, Structural and conductivity studies of poly (ethylene oxide)—silver triflate polymer electrolyte system. Mater. sci. appl. 2(11), 1639–1643 (2011)

    CAS  Google Scholar 

  28. K. Ancy, M.R. Bindhu, J.S. Bai, M.K. Gatasheh, A.A. Hatamleh, S. Ilavenil, Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles. Environ. Res. 206, 112492 (2022)

    Article  PubMed  CAS  Google Scholar 

  29. A.A. Menazea, H.A. Ibrahium, N.S. Awwad, M.E. Moustapha, M.O. Farea, M.A. Bajaber, Facile synthesis and high-performance dielectric properties of polyethylene oxide-chitosan- iron oxide nano-composite for electrical applications. J. Mater. Res. Technol. 18, 2273–2281 (2022)

    Article  CAS  Google Scholar 

  30. G. Patel, M.B. Sureshkumar, P. Patel, Spectroscopic investigation and characterizations of PAM/PEO blends films. Int. j. sci. res. publ. 4(2), 9–24 (2015)

    Google Scholar 

  31. Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei, G.A. Somorjai, Probing the Interaction of Poly (vinylpyrrolidone) with Platinum Nanocrystals by UV− Raman and FTIR. J. Phys. Chem. B 110(46), 23052–23059 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. H.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett. 8(3), 177–185 (2011)

    CAS  Google Scholar 

  33. M.A. Morsi, A. Rajeh, A.A. Menazea, Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J. Mater. Sci.: Mater. Electron. 30(3), 2693–2705 (2019)

    CAS  Google Scholar 

  34. J. Huang, H. Yang, M. Chen, T. Ji, Z. Hou, M. Wu, An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer. Polym. Test. 59, 212–219 (2017)

    Article  CAS  Google Scholar 

  35. Y.S. Zou, H. Yang, H.P. Wang, D. Lou, C.J. Tu, Y.C. Zhang, Microstructure, optical and photoluminescence properties of Ga-doped ZnO films prepared by pulsed laser deposition. Phys. B: Condens. Matter 414, 7–11 (2013)

    Article  CAS  Google Scholar 

  36. M.A. Sani, M. Tavassoli, S.A. Salim, M.A. lalabadi, D.J. McClements, Development of green halochromic smart and active packaging materials TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll. 124, 107324 (2022)

    Article  Google Scholar 

  37. A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  38. T. Frade, V. Bouzon, A. Gomes, M.I. da Silva Pereira, Pulsed-reverse current electrodeposition of Zn and Zn-TiO2 nanocomposite films. Surf. Coat. Technol. 204(21–22), 3592–3598 (2010)

    Article  CAS  Google Scholar 

  39. Y. Khairy, H.I. Elsaeedy, M.I. Mohammed, H.Y. Zahran, I.S. Yahia, Anomalous behaviour of the electrical properties for PVA/TiO2 nanocomposite polymeric films. Polym. Bull. 77, 6255–6269 (2020)

    Article  CAS  Google Scholar 

  40. M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, A. Kallel, Influence of TiO2 rutile doping on the thermal and dielectric properties of nanocomposite films based PVA. J. Alloys Compd. 750, 375–383 (2018)

    Article  CAS  Google Scholar 

  41. J.H. Yang, Y.S. Han, J.H. Choy, TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495, 266–271 (2006)

    Article  CAS  Google Scholar 

  42. M.A. Morsi, A.M. Abdelghany, UV-irradiation assisted control of the structural, optical and thermal properties of PEO/PVP blended gold nanoparticles. Mater. Chem. Phys. 201, 100–112 (2017)

    Article  CAS  Google Scholar 

  43. M.M. Atta, A.M.A. Henaish, A.M. Elbasiony, E.O. Taha, A.M. Dorgham, Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar. Opt. Mater. 127, 112268 (2022)

    Article  CAS  Google Scholar 

  44. J. Xu, Z. Liu, J. Wang, P. Liu, M. Ahmad, Q. Zhang, B. Zhang, Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J. Colloid Interface Sci. 607(2), 1036–1049 (2022)

    Article  PubMed  CAS  Google Scholar 

  45. N.S. Awwad, M.F. AbdEl-Kader, H.A. Ibrahium, G.M. Asnag, M.A. Morsi, Green synthesis of different ratios from bimetallic gold: Silver nanoparticles core@ shell via laser ablation scattered in Chitosan-PVA matrix and its electrical conductivity behavior Compos. Commun. 24, 100678 (2021)

    Google Scholar 

  46. M.R. Atta, Q.A. Alsulami, G.M. Asnag, A. Rajeh, Enhanced optical, morphological, dielectric, and conductivity properties of gold nanoparticles doped with PVA/CMC blend as an application in organoelectronic devices. J. Mater. Sci.: Mater. Electron. 32(8), 10443–10457 (2021)

    CAS  Google Scholar 

  47. E.M. Abdallah, M.A. Morsi, G.M. Asnag, A.E. Tarabiah, Structural, optical, thermal, and dielectric properties of carboxymethyl cellulose/sodium alginate blend/lithium titanium oxide nanoparticles: Biocomposites for lithium-ion batteries applications. Int. J. Energy Res. 46, 1–17 (2022)

    Article  Google Scholar 

  48. M. Enachi, O. Lupan, T.T. Braniste, A. Sarua, L. Chow, Y.K. Mishra et al., Integration of individual TiO2 nanotube on the chip: Nanodevice for hydrogen sensing. Phys. Status Solidi RRL 9(3), 171–174 (2015)

    Article  CAS  Google Scholar 

  49. M.A. Morsi, M. Abdelaziz, A.H. Oraby, I. Mokhles, Structural, optical, thermal and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solids 125, 103–114 (2019)

    Article  CAS  Google Scholar 

  50. S.L. Agrawal, M. Singh, N. Asthana, M.M. Dwivedi, K. Pandey, Dielectric and ion transport studies in [PVA: LiC2H3O2]: Li2Fe5O8 polymer nanocomposite electrolyte system. Int. J. Polym. Mater. Polym. Biomater. 60(4), 276–289 (2011)

    Article  CAS  Google Scholar 

  51. A.S. Ayesh, Dielectric relaxation and thermal stability of polycarbonate doped with MnCl2 salt. J. Thermoplast. Compos. Mater. 21(4), 309–322 (2008)

    Article  CAS  Google Scholar 

  52. S.B. Aziz, Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull. Mater. Sci. 38(6), 1597–1602 (2015)

    Article  CAS  Google Scholar 

  53. A. Lim, T. Zheng, S. Sabidi, T. Ohno, T. Maeda, Y. Andou, Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere 286(2), 131731 (2022)

    Google Scholar 

  54. Z.I. Abdeen, A.F. El-Farargy, N.A. Negm, Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. J. Mol. Liq. 250, 335–343 (2018)

    Article  CAS  Google Scholar 

  55. A.E. Tarabiah, H.A. Alhadlaq, Z.M. Alaizeri, A.A. Ahmed, G.M. Asnag, M. Ahamed, Enhanced structural, optical, electrical properties and antibacterial activity of PEO/CMC doped ZnO nanorods for energy storage and food packaging applications. J. Polym. Res. 29(5), 1–16 (2022)

    Article  Google Scholar 

  56. D. Tekin, D. Birhan, H. Kiziltas, Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater. Chem. Phys. 251, 123067 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at. Jouf University for funding this work through research Grant No (DSR-2021-03-0226).

Author information

Authors and Affiliations

Authors

Contributions

MAS Supervision, Writing—original draft, Writing- review & editing. TFQ Supervision, Formal analysis, Methodology. GMA Conceptualization, Resources, Investigation. EMA Project administration, Data curation.

Corresponding authors

Correspondence to Talal F. Qahtan or G. M. Asnag.

Ethics declarations

Conflict of interest

The authors maintain that they have no conflict of interest to be described in this communication.

Ethical approval

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebak, M.A., Qahtan, T.F., Asnag, G.M. et al. The Role of TiO2 Nanoparticles in the Structural, Thermal and Electrical Properties and Antibacterial Activity of PEO/PVP Blend for Energy Storage and Antimicrobial Application. J Inorg Organomet Polym 32, 4715–4728 (2022). https://doi.org/10.1007/s10904-022-02440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02440-8

Keywords

Navigation