Skip to main content
Log in

A Facile Colorimetric Method for Ultra-rapid and Sensitive Detection of Copper Ions in Water

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

It is of great meaning to develop a facile, reliable and sensitive method to detect copper ions in water. In the study, a facile method has been developed for rapid and sensitive detection of Cu2+. An interesting phenomenon has been observed that 3,3′,5,5′-tetramethylbenzidine (TMB) ethanol solution can be extremely fast passed from colorless to yellow once Cu2+ ions are added. It easily occurs to us that Cu2+ can be quantitatively determined via the absorbance at 904 nm of the color changed TMB solution. More importantly, some specific anions (Cl, Br) can significantly enhance the absorption intensity. Under the optimized experimental conditions, this method exhibits a good linear response range for Cu2+ from 0.5 to 100 μM, with the detection limit of 93 nM. Moreover, the possible detection principle has been explored. It is worth mentioning that the color change can be clearly observed by naked eyes for the detection of 1 μM Cu2+, which is far below the threshold limit of Cu2+ in drinking water suggested by World Health Organization. It means that this method possess great promise for on-site Cu2+ detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Fig. 6

Similar content being viewed by others

References

  1. J. Wang, C. Luo, C. Shan, Q. You, J. Lu, Nat. Chem. (2015). https://doi.org/10.1038/nchem.2381

    Article  PubMed  PubMed Central  Google Scholar 

  2. W.J. Lu, Y.F. Gao, Y. Jiao, S.M. Shuang, C.Z. Li et al., Nanoscale (2017). https://doi.org/10.1039/C7NR02336G

    Article  PubMed  PubMed Central  Google Scholar 

  3. G. Ondrasek, P.L. Clode, M.R. Kilburn, P. Guagliardo, D. Romic et al., Int. J. Environ. Res. Public Health (2019). https://doi.org/10.3390/ijerph16030373

    Article  PubMed  PubMed Central  Google Scholar 

  4. C.M. Rico, S. Majumdar, M. Duarte-Gardea, J. Agric. Food Chem. 59, 3485–3498 (2011). https://doi.org/10.1021/jf104517j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. M. Lan, J. Zhang, Y.S. Chui, P. Wang, X. Chen et al., ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am5062568

    Article  PubMed  Google Scholar 

  6. R. Singh, N. Gautam, A. Mishra, R. Gupta (2011) Indian J. Pharmacol. Accessed from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113373/

  7. S. Tiwari, C. Lata, Heavy metal stress. Front. Plant. Sci. (2018). https://doi.org/10.3389/fpls.2018.00452

    Article  PubMed  PubMed Central  Google Scholar 

  8. F. Yu, P. Gong, Z. Hu, Y. Qiu, Y. Cui et al., J. Neuroinflamm. (2015). https://doi.org/10.1186/s12974-015-0343-3

    Article  Google Scholar 

  9. J.H. Viles, Coord. Chem. Rev. (2012). https://doi.org/10.1016/j.ccr.2012.05.003

    Article  Google Scholar 

  10. M.J. Pushie, I.J. Pickering, G.R. Martin, S. Tsutsui, F.R. Jirik et al., Metallomics (2011). https://doi.org/10.1039/c0mt00037j

    Article  PubMed  Google Scholar 

  11. H. Elmizadeh, M. Soleimani, F. Faridbod, G.R. Bardajee, J. Fluoresc. (2017). https://doi.org/10.1007/s10895-017-2174-3

    Article  PubMed  Google Scholar 

  12. S.R. Patil, J.P. Nandre, P.A. Patil, S.K. Sahoo, M. Devi et al., RSC Adv. (2015). https://doi.org/10.1039/C4RA10419F

    Article  Google Scholar 

  13. X. Ma, Z. Tan, G. Wei, D. Wei, Y. Du, Analyst (2012). https://doi.org/10.1039/C2AN16155A

    Article  PubMed  Google Scholar 

  14. G. Yang, W. Fen, C. Lei, W. Xiao, H. Sun, J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2008.05.007

    Article  PubMed  Google Scholar 

  15. C. Ianni, E. Magi, F. Soggia, P. Rivaro, R. Frache, Microchem. J. (2010). https://doi.org/10.1016/j.microc.2009.07.016

    Article  Google Scholar 

  16. P. Leonhard, R. Pepelnik, A. Prange, N. Yamada and T. Yamada (2002) J. Anal. At. Spectrom. Accessed from https://pubs.rsc.org/en/content/articlehtml/2002/ja/b110180n

  17. M. Xu, Z. Gao, Q. Wei, G. Chen, D. Tang, Biosens. Bioelectron. (2015). https://doi.org/10.1016/j.bios.2015.05.056

    Article  PubMed  PubMed Central  Google Scholar 

  18. D. Tang, J. Zhang, Y. Tang, L. Teng, B. Xia et al., Electroanalysis (2015). https://doi.org/10.1002/elan.201500336

    Article  Google Scholar 

  19. W.W. Zhao, J.J. Xu, H.Y. Chen, Analyst (2016). https://doi.org/10.1039/C6AN01123C

    Article  PubMed  PubMed Central  Google Scholar 

  20. H. Li, X. He, Z. Kang, H. Huang, Y. Liu et al., Angew. Chem. Int. Ed. Engl. (2010). https://doi.org/10.1002/anie.200906154

    Article  PubMed  PubMed Central  Google Scholar 

  21. V.K. Gupta, A.K. Singh, M.R. Ganjali, P. Norouzi, F. Faridbod et al., Sens. Actuators B Chem. (2013). https://doi.org/10.1016/j.snb.2013.03.062

    Article  Google Scholar 

  22. W. Chen, X. Tu, X. Guo, Chem. Commun. (2009). https://doi.org/10.1039/B820145E

    Article  Google Scholar 

  23. Y. Zhou, S. Wang, K. Zhang, X. Jiang, Angew. Chem. Int. Ed. Engl. (2008). https://doi.org/10.1002/anie.200802317

    Article  PubMed  PubMed Central  Google Scholar 

  24. W. Zhao, W. Jia, M. Sun, X. Liu, Q. Zhang et al., Sens. Actuators B (2016). https://doi.org/10.1016/j.snb.2015.09.119

    Article  Google Scholar 

  25. R. Ren, G. Cai, Z. Yu, Y. Zeng, D. Tang, Anal. Chem. (2018). https://doi.org/10.1021/acs.analchem.8b03538

    Article  PubMed  PubMed Central  Google Scholar 

  26. R. Ren, G. Cai, Z. Yu, D. Tang, Sens. Actuators B (2018). https://doi.org/10.1016/j.snb.2018.03.049

    Article  Google Scholar 

  27. L. Wang, Z.-L. Wei, Z.-Z. Chen, C. Liu, W.-K. Dong et al., Microchem. J. (2020). https://doi.org/10.1016/j.microc.2020.104801

    Article  Google Scholar 

  28. W. Anbu Durai, A. Ramu, J. Fluoresc. (2020). https://doi.org/10.1007/s10895-020-02488-0

    Article  PubMed  Google Scholar 

  29. Z. Zhang, X. Zhang, B. Liu, J. Liu, J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.7b00601

    Article  PubMed  PubMed Central  Google Scholar 

  30. L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang et al., ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.7b01616

    Article  PubMed  PubMed Central  Google Scholar 

  31. H. Huang, L. Liu, L. Zhang, Q. Zhao, Y. Zhou et al., Anal. Chem. (2017). https://doi.org/10.1021/acs.analchem.6b02966

    Article  PubMed  PubMed Central  Google Scholar 

  32. X. Wang, Y. Yang, L. Li, M. Sun, H. Yin et al., Anal. Chem. (2014). https://doi.org/10.1021/ac500281r

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Moreno-Guzman, A. Jodra, M.A. Lopez, A. Escarpa, Anal. Chem. (2015). https://doi.org/10.1021/acs.analchem.5b03928

    Article  PubMed  Google Scholar 

  34. P.M. Kanerva, T.S. Sontag-Strohm, P.H. Ryöppy, P. Alho-Lehto, H.O. Salovaara, J. Cereal Sci. (2006). https://doi.org/10.1016/j.jcs.2006.08.005

    Article  Google Scholar 

  35. B. Singh, E. Flampouri, E. Dempsey, Analyst (2019). https://doi.org/10.1039/C9AN00982E

    Article  PubMed  Google Scholar 

  36. T. Puangsamlee, Y. Tachapermpon, P. Kammalun, K. Sukrat, C. Wainiphithapong et al., J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2017.11.048

    Article  Google Scholar 

  37. M.S. Kim, T.G. Jo, H.M. Ahn, C. Kim, J. Fluoresc. (2017). https://doi.org/10.1007/s10895-016-1964-3

    Article  PubMed  Google Scholar 

  38. Z. Guo, Q. Niu, T. Li, T. Sun, H. Chi, Spectrochim. Acta A (2019). https://doi.org/10.1016/j.saa.2019.01.044

    Article  Google Scholar 

  39. J.M. Liu, H.F. Wang, X.P. Yan, Analyst (2011). https://doi.org/10.1039/C1AN15460E

    Article  PubMed  PubMed Central  Google Scholar 

  40. H. Shao, Y. Ding, X. Hong, Y. Liu, Analyst (2018). https://doi.org/10.1039/C7AN01619K

    Article  PubMed  Google Scholar 

  41. G.J. Park, G.R. You, Y.W. Choi, C. Kim, Sens. Actuator. B (2016). https://doi.org/10.1016/j.snb.2016.01.133

    Article  Google Scholar 

  42. Y.J. Na, Y.W. Choi, J.Y. Yun, K.M. Park, P.S. Chang, Spectrochim. Acta. A (2015). https://doi.org/10.1016/j.saa.2014.10.060

    Article  Google Scholar 

  43. R. Nagarajan, H.-I. Ryoo, B.D. Vanjare, N. Gyu Choi, K. Hwan Lee, J. Photochem. Photobiol. A (2021). https://doi.org/10.1016/j.jphotochem.2021.113435

    Article  Google Scholar 

  44. H.Y. Jo, G.J. Park, Y.J. Na, Y.W. Choi, G.R. You et al., Dyes Pigment. (2014). https://doi.org/10.1016/j.dyepig.2014.05.014

    Article  Google Scholar 

  45. J. Song, Q. Ma, Y. Liu, Y. Guo, F. Feng et al., RSC Adv. (2019). https://doi.org/10.1039/C9RA07030C

    Article  PubMed  PubMed Central  Google Scholar 

  46. D. Yun, J. B. Chae and C. Kim (2019) J. Chem. Sci. Accessed from https://www.ias.ac.in/article/fulltext/jcsc/131/02/0010

  47. G.R. You, H.J. Jang, T.G. Jo, C. Kim, RSC Adv. (2016). https://doi.org/10.1039/C6RA12368F

    Article  PubMed  Google Scholar 

  48. X. Zheng, J. Pan, L. Gao, X. Wei, J. Dai et al., Microchim. Acta (2014). https://doi.org/10.1007/s00604-014-1382-7

    Article  Google Scholar 

  49. T.G. Jo, Y.J. Na, J.J. Lee, M.M. Lee, S.Y. Lee et al., New J. Chem. (2015). https://doi.org/10.1039/C5NJ00125K

    Article  Google Scholar 

  50. J. Chen, Q. Ma, M. Li, D. Chao, L. Huang et al., Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23737-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. D. Karabelli, S. Ünal, T. Shahwan, A.E. Eroğlu, Chem. Eng. J. (2011). https://doi.org/10.1016/j.cej.2011.01.015

    Article  Google Scholar 

  52. K.I. Kugel’, D.I. Khomskii, Phys. Usp. (1982). https://doi.org/10.1070/PU1982v025n04ABEH004537

    Article  Google Scholar 

  53. G.A. Gehring, K.A. Gehring, Phys. Usp. (1975). https://doi.org/10.1088/0034-4885/38/1/001

    Article  Google Scholar 

  54. K. Fajans, N.J. Kreidl, J. Am. Ceram. Soc. (1948). https://doi.org/10.1111/j.1151-2916.1948.tb14273.x

    Article  Google Scholar 

  55. Q. Hao, D. Zhao, H. Duan, C. Xu, Chemsuschem (2015). https://doi.org/10.1002/cssc.201403420

    Article  PubMed  Google Scholar 

  56. Ç. Oruç, A. Altındal, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.05.006

    Article  Google Scholar 

  57. W. Zheng, Y. Li, M. Liu, C.-S. Tsang, L.Y.S. Lee et al., Electroanalysis (2018). https://doi.org/10.1002/elan.201800076

    Article  PubMed  PubMed Central  Google Scholar 

  58. J.R. Macairan, R. Naccache, F. Yarur, Environ. Sci. (2019). https://doi.org/10.1039/C8EN01418C

    Article  Google Scholar 

  59. S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun (2012). RSC Adv. Accessed from https://pubs.rsc.org/en/content/articlehtml/2012/ra/c1ra00709b

  60. P. Li, Z. Feng, Z. Yu, Y. Chen, P. Li et al., Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.011

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from Sichuan Province Science and Technology Support Program (No. 2020YFN0029), the One-Thousand-Talents Scheme in Sichuan Province, Scientific Start-up Research Fund of Chengdu University of Information Technology (No. KYTZ201714), and the Central University Basic Research Fund of Southwest Minzu University (2018NZD08).

Author information

Authors and Affiliations

Authors

Contributions

LC: Methodology, Writing—Original Draft. YL: Writing—Original Draft. HC: Guidance of Theoretical analysis. HL: Designed the experiment and wrote the revised the paper. JL: Writing—Review & Editing. ZC: Writing—Review & Editing. BW: Writing—Review & Editing.

Corresponding authors

Correspondence to Hualin Chen or He Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 666 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, Y., Sun, P. et al. A Facile Colorimetric Method for Ultra-rapid and Sensitive Detection of Copper Ions in Water. J Inorg Organomet Polym 32, 2473–2481 (2022). https://doi.org/10.1007/s10904-022-02255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02255-7

Keywords

Navigation